登陆注册
11022500000022

第22章 数学大发现(2)

这个奇怪的书名是有来由的。有一天,开普勒到酒店去喝酒,发现奥地利的葡萄酒桶,和他家乡莱茵的葡萄酒桶不一样。他想,奥地利葡萄酒桶为什么偏要做成这个样子呢?高一点好不好?扁一点行不行?这里面会不会有什么学问?经过研究,开普勒发现,当圆柱形酒桶的截面ABCD的对角线长度固定时,比如等于m,以底圆直径和高的比为2时体积最大,装酒最多。奥地利的葡萄酒桶,恰好是按这个比例做成的。这一意外发现,使开普勒非常高兴,决定给这本关于求面积和体积的书,起名为《葡萄酒桶的立体几何》。

在这本书中,开普勒除介绍了他求面积的新方法外,还介绍了他求出的近百个旋转体的体积。比如,他计算了圆弧绕着弦旋转一周,所产生的各种旋转体的体积。这些旋转体的形状,有的像苹果,有的像柠檬,有的像葫芦。

开普勒大胆地把圆分割成无穷多个小扇形,又果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求面积的基础上,向前迈出了重要的一步。

《葡萄酒桶的立体几何》一书,很快在欧洲流传开了。数学家高度评价开普勒的工作,称赞这本书是人们创造求面积和体积新方法的灵感源泉。

一种新的理论,在开始的时候很难十全十美。开普勒创造的求面积的新方法,引起了一些人的怀疑。他们问道:开普勒分割出来的无穷多个小扇形,它的面积究竟等于不等于零?如果等于零,半径OA和半径OB就必然重合,小扇形OAB就不存在了;如果它的面积不等于零,小扇形OAB与小三角形OAB的面积就不会相等。开普勒把两者看作相等就不对了。

面对别人提出的问题,开普勒自己也说不清楚。

卡瓦利里的方法

卡瓦利里是意大利物理学家伽利略的学生,他研究了开普勒求面积方法中的问题。

卡瓦利里想,开普勒把圆分成无穷多个小扇形,这每个小扇形的面积到底等于不等于零,就不好确定了。但是,只要小扇形还是图形,它是可以再分的呀。开普勒为什么不再继续分下去了呢?要是真的再细分下去,那分到什么程度为止呢?这些问题,使卡瓦利里陷入了沉思之中。

有一天,当卡瓦利里的目光落到自己的衣服上时,他忽然灵机一动:唉,布不是可以看成为面积嘛!布是由棉线织成的,要是把布拆开的话,拆到棉线就为止了。我们要是把面积也像布一样拆开,拆到哪儿为止呢?应该拆到直线为止。几何学规定直线没有宽度,把面积分到直线就应该不能再分了。于是,他把不能再细分的东西叫做“不可分量”。棉线是布的不可分量,直线是平面面积的不可分量。

卡瓦利里还进一步研究了体积的分割问题。他想,可以把长方体看成为一本书,组成书的每一页纸,应该是书的不可分量。这样,平面就应该是长方体体积的不可分量。几何学规定平面是没有薄厚的,这样想也是有道理的。

卡瓦利里紧紧抓住自己的想法,反复琢磨,提出了求面积和体积的新方法。

1635年,当《葡萄酒桶的立体几何》一书问世20周年的时候,意大利出版了卡瓦利里的《不可分量几何学》。在这本书中,卡瓦利里把点、线、面,分别看成是直线、平面、立体的不可分量;把直线看成是点的总和,把平面看成是直线的总和,把立体看成是平面的总和。

卡瓦利里怎样用不可分量求面积的呢?现在以椭圆为例,介绍如下:

椭圆有一条长轴和一条短轴,如图相交于O,把椭圆分成了四等份。

卡瓦利里设a和b是长轴和短轴的一半;以椭圆中心O为圆心,以b为半径,在椭圆内作一个圆。

他根据不可分量的想法,把椭圆面积的四分之一,看成是由无穷多条平行于a的线段组成,每一条线段与圆交于一点。

卡瓦利里根据椭圆的性质推出,任一条和a平行的线段MN,与圆交于P,一定有MPMN=ba他把这样引出的无穷多条平行线段,由小到大编上M1N1,M2N2,M3N3,…就可以得到一大串比例式M1P1M1N1=M2P2M2N2=M3P3M3N3=…=ba比例有这样一个性质:如果ab=cd成立,那么a+cb+d=cd也成立。他利用比例的这个性质,就得到M1P1+M2N2+M3P3+…M1N1+M2N2+M3N3+…=ba在卡瓦利里看来,分子的和就是圆面积的四分之一,分母的和就是椭圆面积的四分之一。

因为14圆面积14椭圆面积=圆面积椭圆面积=ba即πb2椭圆面积=ba所以,椭圆面积=πab这就是我们现在求椭圆面积的公式。

卡瓦利里使用不可分量的方法,求出了许多前人不会求的面积,受到了人们的拥护和尊敬。

卡瓦利里还根据不可分量的方法指出,两本书的外形虽然不一样,但是,只要页数相同,薄厚相同,而且每一页的面积也相等,那么,这两本书的体积就应该相等。他认为这个道理,适用于所有的立体,并且用这个道理求出了很多立体的体积。这就是有名的“卡瓦利里原理”。

事实上,最先提出这个原理的,是我国数学家祖日恒。

祖日恒是祖冲之的儿子,生于公元5到6世纪,比卡瓦利里早一千多年,所以我们叫它“祖日恒原理”或者“祖日恒定理”。

荒谬的结果

卡瓦利里的《不可分量几何学》一书,也受到了一些人的责难。原因是使用不可分量的方法,可以推出任意两个三角形的面积相等。

他们说,任意作一个两腰不相等的三角形ABC,由顶点A向对边BC引高线AD,AD把△ABC分成大小不等的△ABD和△ADC。显然,△ABD的面积大于△ADC的面积。

用不可分量的方法,把△ABD看成是由无穷多条平行于高AD的线段M1N1,M2N2,M3N3,…组成的,写成式子就是△ABD的面积=M1N1+M2N2+M3N3+…边AB边上的N1,N2,N3,…点,分别引平行于底边CB的直线,交AC边于N1,N2,N3,…再过N1′,N2′,N3′…点,引垂直于BC边的线段N1′M1′,N2′M2′,N3′M3′…由上面的作法得到M1N1=M1′N1′,M2N2=M2′N2′,M3N3=M3′N3′…根据不可分量的方法,△ADC的面积又可以看作是由无穷多条平行线段M1′N1′,M2′N2′,M3′N3′,…组成的,所以有等式△ADC的面积=M1′N1′+M2′N2′+M3′N3′+…=M1N1+M2N2+M3N3+…=△ABD的面积看来不可分量的方法,一定存在着什么漏洞。不然的话,怎么会推出这样荒谬的结果呢?

问题出在哪儿呢?

三、难求的速度

谁都知道飞机快,火车慢,自行车更慢。可是人们对各种速度的认识,并不都是这么简单明白,没有争论。

谁先落地

两件轻重不同的东西,同时从楼上自由下落,哪个先着地?你可能说重的先着地,也可能说重的轻的一起着地,究竟哪个回答对呢?

这个问题,人们很早就注意到了。公元前三百多年,古希腊有个哲学家叫亚里士多德,他认为轻重不同的两件物体,从同一高度自由下落,一定是重物先着地。亚里士多德的名气很大,“先哲”的话当然不会错,所以人们把重物先着地的说法当作真理,信奉了2000年。

16世纪末,比利时的工程师斯台文指出,重物先着地的说法是错误的。他说,在不考虑空气阻力的情况下,轻重不同的物体应该同时着地。斯台文还作了实验,他拿轻重不同的两件物体,从十米高处同时自由下落,结果是同时着地。

一个不知名的人竟敢说“先哲”的话错了,竟敢说人们把这个问题认识错了2000年,哪里会有人信哩!

著名的比萨斜塔实验

真理和谬误不容颠倒。继斯台文之后,意大利物理学家伽利略,继续向亚里士多德的错误发起进攻。

与斯台文一样,伽利略也认为轻重不同的物体应该同时着地。为了回答保守势力的反对,他于1590年作了一次自由落体实验。

在意大利比萨城郊有一座倾斜的古塔,伽利略就选择这个斜塔作为实验场地,邀请了许多人来参观,进行了著名的“比萨斜塔实验”。伽利略让一个一磅重和一个一百磅重的两个铅球,同时由塔顶自由落下,只听见“咚”的一声响,两个铅球同时着地了。这“咚”的一声,宣布了伽利略的胜利,同时也宣告了亚里士多德统治人们将近2000年的错误理论彻底破产!

比萨斜塔实验,不但使人们承认了物体下落的速度,与物体本身的重量无关;而且还告诉人们,物体在自由下落的过程中,速度不是一成不变的,而是越往下落速度越快。

伽利略还通过实验发现,自由落体运动的速度变化是有规律的,这就是每过一秒钟增加约9.8米。因为自由落体是由静止开始下落,所以第一秒末的速度=9.8米/秒;第二秒末的速度=9.8+9.8=19.6米/秒。

如此等等。如果用g表示9.8,每过一秒,速度就增加一个g,过t秒,速度就变成为gt了。

伽利略第一次找到了关于自由落体运动的公式:

v(速度)=gts(路程)=12=gt2伽利略把实验方法与数学计算结合起来,为物理学的研究开辟了新的方向。

变速运动

16世纪的欧洲人,认为炮弹是沿着折线飞行的,甚至在教科书里也这样讲。

为什么他们会这样认识呢?估计这是因为在放炮的人看来,炮弹总是沿着直线飞出去的;而在挨炮弹的人看来,炮弹也总是沿着直线从天而降。把两者合在一起,炮弹就成了按折线飞行的了。

伽利略通过实验和计算,告诉人们炮弹飞行的路线不是一条折线,而是一条曲线。他还给这条曲线取了一个形象的名字,叫做“抛物线”。与此同时,他还指出飞行中的炮弹和自由下落的物体一样,速度也在随时变化,是“变速运动”。

伽利略大胆构思,精心实验,并且用数学计算论证结论,一连纠正了人们的两个错误认识,为普及科学知识和引起人们对科学研究的兴趣,做出了可贵的贡献。

伽利略求速度的故事就讲到这里。这个故事给我们提出了一个既重要又有趣的问题:变速运动的速度随时变化,怎样正确理解和掌握变速运动的“瞬时速度”呢?

“飞矢不动”论

“瞬时”是一瞬间的意思。要正确理解物体运动的瞬时速度,首先要搞清楚什么是“一瞬间”。平时,我们爱用“一眨巴眼”来形容很短的时间。物理学上的“一瞬间”,可要比“一眨巴眼”短得多了。对于瞬时速度,我们可以先粗略地把它理解为:在非常、非常短的一丁点时间内,物体运动的速度。

仔细想想,你可能会问,物体运动离不开时间,如果时间非常、非常短,物体还能运动吗?

在很长的时期里,人们对瞬时速度是否存在,一直议论纷纷,争论不休。公元前4世纪,古希腊有个著名人物叫芝诺,他不但反对有瞬时速度,而且认为运动也是不可能存在的。

芝诺能言善辩,有人写诗形容他:“大哉芝诺,鼓舌如簧;无论你说什么,他总认为荒唐。

”芝诺编造了许多诡辩问题,其中一个叫做“飞矢不动”。所谓诡辩,就是用貌似正确的方法,来论证错误的结论。“飞矢不动”的意思是说,飞行着的箭根本没动地方。

芝诺是这样来论证他的诡辩的:如图,箭要由A点飞到B点,它首先要经过A、B的中点C。箭要由A飞到C,又先要飞到A、C的中点D,而A、D两点之间还有中点E。依此类推,不管两点距离多近,它们之间总还会有中点的。因为我们永远也找不到距离A点最近的中点,所以箭也就动不了。

“飞矢不动”的结论如此荒谬。但是,要从芝诺的论证中找出它的错误,却是十分困难的。

可见当时人们对运动的认识还很不够。

掌握速度

17世纪的欧洲,由于远洋航行的兴起,枪炮的使用,人们越来越要求精确掌握物体运动的速度。

大炮射程的远近,一方面和大炮的仰角有关,另一方面和炮弹离开炮口那一瞬间的初速度有关。在仰角固定的情况下,初速度越大,炮弹飞行得越远。为了提高大炮的射程和命中率,必须准确掌握炮弹飞行的初速度。

远洋航行需要随时确定船只在大海中的位置。稍有差错,航行的方向不对头了,就可能引起船只沉没,船员死亡。当时使用的方法是观察日、月、星辰的位置,叫“天文导航”。但是,天体在运行,航船在前进,为了使天文导航准确可靠,必须准确知道行星和航船的速度。

此外,在17世纪发展起来的机械力学、流体力学等科学技术,也需要精确掌握运动的速度。

流木测速法

公元3世纪,我国三国时期的吴国,经常派船到东海和南海一带去。船只在茫茫的大海中航行,怎样知道航行的速度呢?他们的办法是:在船头把一块木板投入海中,然后从船头快速跑到船尾,记录下木板从船头到船尾的时间。船身的长度是知道的,比如船身长40米,除以木板从船头到达船尾的时间,比如10秒,就可以知道船速是4米/秒。

这样测量出来的速度对不对呢?如果海面风平浪静,船只又保持方向不变,速度不变,测量出来的速度是正确的。这样的运动叫做“匀速直线运动”。匀速直线运动的速度很好求,只要用距离s除以时间t,就得到物体在任一时刻的瞬时速度v,即v=st。

可是,风儿哪能不吹,海水哪能不动,船只在大海中航行,速度不可能是一成不变的,这时船的瞬时速度又怎样求呢?前面求得的4米/秒又算什么速度?为了解决这个问题,我们不妨先假定船是沿直线前进,是变速直线运动。在这种情况下,4米/秒虽然不是瞬时速度,可是还很有用,它代表船在十秒内的“平均速度”。

平均速度是什么意思呢?

比如说这学期,你们班的数学考过三次,你的成绩分别是84,85,92。为了对你这学期数学学习成绩有个总的了解,需要求出平均成绩:

(84+85+92)/3=87(分)。

尽管你在这三次考试中,没有一次得87分,但是,87分却表示了你这学期数学学习总的情况。平均速度的意思也是这样。

变速直线运动的平均速度也好求,我们可以先求出船在一段时间内的平均速度,然后再来想办法求瞬时速度。

瞬时速度

假设船由A出发,沿直线航行到了C,我们可以用靠拢的方法,来求船在B点的瞬时速度。

第一步,以B为起点,量出BD1(s1)=90米,记录船从B到D1所用时间t1=4秒。这样,我们可以求出船在BD1一段的平均速度v1:

v1=s1t1=904=22.5(米/秒)第二步,缩短BD1的距离,取BD2(s2)=43米,记录船由B到D2的时间t2=2秒。这样,船在BD2一段的平均速度是v2:

v2=s2t2=433=21.5(米/秒)BD2的距离比BD1小,平均速度v2,应该比平均速度v1更接近船在B点的瞬时速度。

可以想像,随着距离s的不断缩短,求出来的平均速度v,应该越来越接近B点的瞬时速度。

我们把距离缩短的过程和计算结果列成一个表:

同类推荐
  • 官员商人的故事

    官员商人的故事

    童话是世界儿童文学中永不凋谢的花冠,是与我们少年儿童捉迷藏的小朋友。童话王国简直就是一个多姿多彩的万花筒,在那些语言浅显、妙趣盎然的美丽童话故事里,有的蕴藏着严肃的人生准则,富于哲理,发人深省;有的反映了社会的真实现象,揭露了黑暗、鞭打了丑恶;有的揭示了大自然的奥秘,使人增长知识,开拓视野。童话奠定了我们的人生基础,影响着我们的一生。因此应该把那些名篇珍品传给后代,陶冶后代。为此,我们编辑了这套《世界经典童话故事全集》丛书,把世界各国许多童话名篇佳作装在一个美丽的花篮里,让它熠熠闪烁的光辉照耀下一代人茁壮成长,使孩子们梦幻般地度过金色的童年。
  • 早期教育成就一生

    早期教育成就一生

    “所有的孩子都是天才,但我们却在他们生命最初的六年磨灭了他们的天资。”研究结果表明,90%的教育基础都是在孩子6岁以前就奠定了的。幼儿时期是孩子身体和智力发育的黄金期,是潜能开发的最佳时期,抓住这一时期对孩子进行早期教育,即使是天资平平的孩子,也可能成为天才!
  • 长大有意思

    长大有意思

    “中国儿童文学名家精品畅销书系”之一,收录了郁雨君小说和散文中的经典作品。作者以明朗而优美的语言、深沉的笔触,随心所欲地顾盼和表现周围的青春男女,同时也在从容自如地表现自己的内心和情感世界。
  • 穿越喜马拉雅山的信鸽

    穿越喜马拉雅山的信鸽

    在第一次世界大战期间,加尔各答市的人都忙着训练鸽子,希望所养的鸽子能被选为传信鸽。小男孩也一心想把花颈鸽训练成信鸽王。它曾冲向老鹰,去救自己的同伴,也曾在暴风雨中迷航;还曾在战场上穿越枪林弹雨……不幸的是花颈鸽在执行一次重要任务时受伤,从此意志消沉……它还能飞上蓝天吗?
  • 金色童话:拇指姑娘

    金色童话:拇指姑娘

    《金色童话:拇指姑娘》收录了二十四篇外国童话,里面除了人们耳熟能详的“拇指姑娘”、“皇帝的新装”等经典童话,还收录了多篇世界各国新颖奇特的优秀民间传说,并配了数幅精美的插图。一个个生动的故事,在对孩子们进行道德和人生教育的同时,也给他们带来了美好的梦想和无穷的欢乐。
热门推荐
  • 海贼王之传奇降临

    海贼王之传奇降临

    飘扬的海贼旗沾满血污的战刀推挤成山的累累尸体海贼搅乱了整片大海书写罪恶与传奇
  • 别走时光

    别走时光

    在社会主义建设道路,在改革开放下的农村生活景象,四个青梅竹马的女性一生不同的命运为内容,彰显着人们在那艰苦生活环境下的顽强毅力以及那生生不息的生命力。
  • 独家婚宠:我的守护天使

    独家婚宠:我的守护天使

    她的人生到底是怎么了?她的未婚夫与堂妹上床被她捉个正着,未婚夫成了妹夫,亲戚们都看她的笑话。最后遇到他,他是上帝派他来拯救她的么?他的出现,让她的生活顿时天翻地复的变化……她问他:你什么时候爱上我的?他用他的吻回答了她的问题。“傻瓜,你还记得10几年前,你曾送了一个守护天使给一个哭鼻子的大男孩不?从那个时候,我就爱上了你……”。好不容易步上了婚姻的殿堂,可是他却不见了。大家都说他已经死了,可是她不相信,他答应过她一辈子都会陪在她身边。她找了他三年。三年后,属于他两个人的守护天使让她在茫茫人海里找到了他。终于找到了他,可是她却不记得她了。为了让他想起自己,她忍受了常人无法承受的………
  • 失仙

    失仙

    两位少年,命运一般的相逢,纠缠不止的命运。朋友?敌人?
  • 重山烟雨诺

    重山烟雨诺

    苏伊诺一个什么都懂的逗B女,季曜沂一个一根筋的大好青年。携手经历了一些不敢想象的人生,出现了各种不忍直视的狗血桥段。从一个武功高强的高手,变成一个打架除了看就只能跑的逗B女,从一个天赋异禀的大好青年,变成快当配角的小男子。请看小女子和大,大,大豆腐的爱情和不同常人的人生。
  • 神与降临

    神与降临

    走在两旁都是枯树的道路上,踩着充满枯树叶的道路,发出“沙沙”的声音,幻想着身穿白裙的少女在前方笑着,是那么的美丽……于是,这便是毁灭的开始……
  • 乡土流离

    乡土流离

    每一个人内心深处都根植着乡土情结,俯仰之间,皆能看见。乡土是根,蕴养游子身;乡土是灯,照亮游子路;乡土是太阳,温暖疲惫的心。乡村越空越萧索,乡亲越少越淡江薄。乡土流离,人与乡土之流离,照亮谁的心伤?我只愿,以点滴笔墨,让世人看见。
  • 逆向物流管理

    逆向物流管理

    本书系统性、实用性强,体系编排新颖、严谨,语言精练,且每章均含有经典案例供阅读讨论。此外,在编写过程中,尽量归纳国内外逆向物流管理的最新研究与实践成果,注重理论联系实际,并注重区别于国内目前存在的逆向物流管理书籍的一般编排格式。本书可以作为管理类专业本科生和相关专业研究生的教材或教学参考书,也可作为物流从业人员的培训用书或自学参考书。
  • 美男等等我

    美男等等我

    她,李木木,奇葩穿越女一枚。因失恋穿越架空王朝。他,寒陌钦,冷若冰霜的四皇子。只因她一面乱了他心。他,寒陌白,妖娆五王爷,拥有比女人还要好看的容颜。曾经与哥哥爱上同一女子,现在似乎又将重演。*********************************************************她梦中总是有个白衣男子,但却无法看清容貌。他心一直住着一个女子,却不是她。一开始把她当成替代品的他,后来深深爱上她的他。爱的无法自拔。可是,她却在大婚之夜莫名消失。一切像是回到了原点。都在他的世界重演。李木木说:“寒陌钦你不能对我笑,否则我会找不到自己。”**********************************************************看奇葩女子李木木如何财色兼得勇闯古代。
  • 崩坏次元

    崩坏次元

    当异常变成日常,当生命因死亡而交汇。当死后的世界,出现了念力与战舰变身。当切尔茜成为了战线中的新成员,当某只章鱼怪物成为了班级中的新老师。一切在此刻崩坏了。以天使的心跳为背景舞台展开,来自各个位面以死去的强者降临到了这个崩毁的死后世界,于是故事乱套了。