登陆注册
15363000000022

第22章 越走越远,天涯无际没有边(6)

银河系由许多次系组成,各个次系在空间分布、时间运动和物理特性方面互有区别。银河系次系可分为三类:第一类是扁平次系,例如O型星次系、B型星次系、经典造父变星次系和银河星团次系等,它们高度集聚于银道面两旁,形成扁平状的系统。第二类是球状次系,如天琴座RR型变星次系、亚矮星次系和球状星团次系等,它们以银河系中心为集聚点,形成球状系统。第三类是中介次系,介于扁平次系与球状次系之间,如新星次系和白矮星次系等。

银河系恒星大部分是成群成团的分布,据统计推算,银河系应有18000个银河星团和500个球状星团,由于受观测技术限制,迄今仅观测到球状星团132个,银河星团1000多个。除了恒星外,银河系内还存有大量的弥漫物质,即气体和尘埃。它们除聚成星际云,高度集中分布于银道面附近外,还广泛散布在星际空间。银河系的质量为1.4×1011个太阳质量,其中恒星约占90%,气体和尘埃组成的星际物质约占10%。

太阳系是银河系的重要成员,是一个“行星系”。它由太阳、9颗行星、数十颗卫星、1000多颗小行星,以及4000多个彗星和流星体、行星际物质构成,在太阳系中,太阳是中心天体,也是一个恒星,位于银道面以北约8秒差距处,距银心约为3万光年,率太阳系以每秒250公里速度绕银心运转,约2.5亿年转一周。太阳的质量占太阳系总质量的99.8%,其强大的引力牢牢地控制着整个太阳系,使太阳系内的其他天体绕太阳公转。太阳系的9大行星分为性质不同的三类:类地行星有水星、金星、地球、火星;巨行星有木星和土星;远日行星有天王星、海王星和冥王星。9大行星都在接近同一平面的近圆形轨道上朝同一方向绕太阳公转,它们具有轨道运动的共面性、近圆性和同向性。

2.银河系的中心,肉眼看不见

每颗恒星在太空中的运动都可以分为两部分:一是横越我们视线的运动,即“横向运动”,它可以由恒星的“自行”计算出来;一是朝向或离开我们的运动,称为“视向运动”。它可以根据光谱的位移确定。对于不同的恒星,这两种运动的组合情况当然会有所不同。但是,如果你观测大量的恒星,那就可以认为它们的平均视向运动大致等于其平均的横向运动。

1913年,丹麦天文学家赫兹普隆研究了某一星团中不同造父变星的光谱,测定了它们的视向运动速度,然后求出其平均值。他又观测了这个星团中恒星的微小“自行”,并且假定造成这些“自行”的平均横向速度就等于平均视向速度。那么就可以计算出星团中的恒星必须离我们多远才会呈现出如此微小的“平均自行”。

就这样,赫兹普隆确定了某些造父变星的距离。于是如前所述,所有其他造父变星的距离也都能测定出来。沙普利将这种测量体系应用于球状星团,在1920年得出结论:这些球状星团集中在一个中心点周围。

这个中心点正是银河系的中心。20世纪30年代,人们确定银河系的跨度达100000光年,由数以千亿计的恒星组成。太阳不是处于银河系的中心,而是在它的外围。球状星团在天空中的分布之所以看起来偏于一边,乃是由于我们自己在银河系中偏于一边的缘故。因此,当我们朝人马座方向望去时,我们的视线要穿过77000光年的一厚层恒星,而在相反的方向上,则仅穿过23000光年厚的恒星。但倘若果真如此的话,银河各处又为什么几乎都一样亮呢?

原来,在群星之间存在着许多气体和尘埃。它们像雾一样吸收着光线,使人们看不见它们背后的恒星。这种气体——尘埃云散布在整个银河系内。它们使我们无法看见银河系的中心,当然也更无法看见银河系中心彼侧的那些部分。事实上,我们看见的仅是银河系中邻近我们的某个范围,而我们自己又正好位于这个范围的中央。这便是银河在各个方向上看起来几乎都一样亮的原因。多亏了球状星团,才使我们即使看不见,也还能推知整个银河系的巨大范围。今天的测量精度比20世纪30年代又有了很大的进步,现在我们知道:银河系的直径约为85000光年,太阳差不多正好位于银河系的对称平面上,与银河系中心相距约27000光年。

3.美丽的亮星云和神秘的暗星云

用肉眼可以看到的星云是猎户座大星云。冬夜,猎户座高悬南天,猎户座中间三颗恒星排成一条线,想象为猎户的腰带,在腰带下方悬挂的宝刀上,即在猎户座θ星处,有一片模糊的光斑,这就是猎户座大星云。用望远镜观看,光斑并不像银河系或其他旋涡星系那样分解为颗颗恒星。光谱的观测表明,它真的是一团稀薄的气体,这些气体物质发射出淡绿色的光芒,形成一个不规则的云块,包围在由四颗像宝石一样闪光的恒星组成的不规则四边形之中,构成了星空中最美丽的天体之一。它离我们只有约500秒差距远,直径约5秒差距,主要由电离的氢所组成,发射出由氢、氦和氧的发射线组成的光谱,估计猎户座大星云的质量约为太阳质量的300倍。

像猎户座大星云这样的天体本身是不能发光的,50多年前哈勃发现,在每一个像猎户座大星云这样的天体附近,必定有一颗非常炽热的蓝白色的恒星。星云发光是这种恒星的光芒照耀的结果。

亮星云在热星照耀下的发光过程大致如下:恒星发出的光子轰击着星云中的原子。低频光子不会产生什么影响,但波长短于9.12×10-8米的紫外光子会使氢原子电离,即使外围电子与氢原子核分开。电离后,带负电的电子不容易与带正电的离子重新复合,因为星云物质十分稀薄,自由电子往往要奔跑几天甚至几十天才能遇上一个氢离子并与之复合,因此亮星云的周围永远都存着一个由电离氢组成的区域,称为电离氢区。

自由电子与氢离子的复合会发射光子,光子的频率取决于电子达到的能级。如果光子能量较大,它会被另一个氢原子吸收,使后者激发或电离,只有较低能量的光子才能从星云中逃逸出来。因此,每一个紫外光子最后总会变成一个红色光子和一些波长更长的光子,这就是我们观测到的包含氢发射线的星云光谱,上述过程称为荧光过程。

炽热恒星的紫外照射,还会加热电离氢区,一般中性氢区的温度为绝对温度的100K左右,而电离氢区的温度一般达1万K,在这样的温度下,粒子间的碰撞可以把一些重元素离子激发到亚稳状态,处在高能态的离子是不稳定的,会很快发射光子返回低能态,但在亚稳态发射光子却需要长得多的时间。在地球实验室中,即使在理想的真空条件下,粒子间的碰撞仍很频繁,粒子难以有足够长的时间停留在亚稳态,也难以发出相应的谱线。因此,这种谱线称为禁戒谱线。但在星云中物质密度很低,每立方厘米体积平均只有10个到1000个粒子,粒子间的碰撞十分稀少。于是,在这种特定条件下,亚稳态可以维持足够长的时间,并产生禁戒谱线。结果星云的禁戒谱线不但可以产生,而且可以非常强,几乎与氢的谱线差不多强,这个结果的原因不难理解。正是电子使一些重元素离子激发到亚稳态,但同样是电子又可以使亚稳态离子经碰撞返回基态,难以长时间维持。因此电子密度足够低是产生禁戒谱线的条件。另一方面,电子密度低将使它和氢离子复合的过程不易发生,从而减少了氢谱线的强度。于是,虽然星云中氧离子数目比氢离子少1/1000,但是1927年鲍恩却在星云光谱中观测到与氢谱线差不多同样强的两条电离氧的谱线(4.959×10-7米和5.007×10-7米)。由于很长时间内人们无法解释这个事实,就把它归结为星云中某种神秘元素“气云”发出的辐射。对气云谱线的解释再一次证明,“天上”和“人间”由同样的物质组成,遵循同样的物理规律。

在很多发射星云附近都有炽热的O、B型恒星,这并不是偶然的巧合。现在知道,恒星正是由星云物质凝聚形成的。亮星云正是刚刚诞生的年轻恒星的摇篮。这些星云往往在银河系的旋臂附近,形成旋臂的密度波压缩星际物质,迫使星云凝聚成为恒星。猎户座大星云就是这样一个恒星的摇篮。照亮它的一些恒星的年龄还不足50万年。用红外观测可以透过气体和尘埃而看到星云的内部,发现其中有一个恒星“婴儿”,它的年龄竟只有2000年。

除了亮星云外,还存在暗星云,当星云背后有很多恒星时,星云会部分或全部挡住恒星的光,结果会在亮的背景下出现一片暗云。有的星云还可以反射附近恒星的光芒,称为反射星云。

恒星处于垂死阶段时,会抛出外层气体,形成蛋圆形的电离区,因为外形与行星相仿,所以称作行星状星云。恒星死亡后也会由超新星爆发而形成云状超新星遗迹,向外发出射电辐射甚至非热的各种辐射。

但是,由星际物质形成的星云本身并不能发光,上述种种情况都需要有某种其他天体来照亮它,没有其他天体的帮助,就无法用光学方法研究它们。星际物质的分布很不均匀,有时可以更稀薄地分布在恒星之间的广袤空间之中,密度可低到每立方厘米只有一个粒子,即原子之间的距离是它本身大小的一亿倍。尘埃总是和气体在一起,但尘埃颗粒比气体更稀薄,由于它们对研究恒星演化和星系性质十分重要,所以需要寻找更有效的研究方法。

五、河外星系,一方神秘而诱人的天体

1.河外星系的发现,银河系≠宇宙

在广袤无垠、浩瀚辽阔的宇宙海洋中,肉眼所见的天体,绝大多数是银河系的成员,那么,银河系就是通常所说的宇宙吗?远远不是!在宇宙中存在着数以亿计的星系。我们的银河系只是一个普通的星系,银河系以外的星系称为河外星系,简称星系,因此,银河系并不是宇宙,它只是宇宙海洋中的一个小岛,是无限宇宙中的很小的一部分。

据天文学家估计,在银河系以外约有上千亿个河外星系,每个星系都由数万乃至数千万颗恒星组成。河外星系有的是两个结成一对,多的则几百以至几千个星系聚成一团。现在观测到的星系团已有10000多个,最远的星系团距离银河系约70亿光年。

河外星系的外形和结构多种多样。1926年,哈勃按星系的形态,把星系分为椭圆星系、旋涡星系和不规则星系三大类。后来又细分为椭圆、透镜、旋涡、棒旋和不规则星系五个类型。各类星系中,距离银河系较近的星系有麦哲伦云星系和仙女座星系。

麦哲伦云星系,包括大麦哲伦云和小麦哲伦云两个星系,它们是银河系的两个伴星,也是离银河系最近的星系,距离银河系分别约为16万和19万光年。它们在北纬20°以南的地区升出地平面,是南天银河附近两个肉眼清晰可见的云雾状天体。大麦哲伦云星系在剑鱼座和山案座,张角约6°,相当于12个月球视直径;小麦哲伦云星系在杜鹃座,张角约2°,相当于4个月球视直径。两个星系在天球上相距约20°,5万光年。

麦哲伦云星系是由阿拉伯人和葡萄牙人首先发现的。1521年,葡萄牙著名航海家麦哲伦在环球航行时,第一次对它们作了精确描述,后来就以他的名字命名。1912年,美国天文学家勒维特发现小麦哲伦云的造父变星的周光关系,赫茨普龙和沙普利随即测定了小麦哲伦云的距离,成为最早确定的河外星系。两星云之间虽存在着微弱的联系,但它们自存一个系统。大哲伦云星系从前离我们可能更近一些,大约在5亿年前,它也许恰好挨着我们的银河系,距离银心只有6.5万光年。

大麦哲伦云星系属棒旋矮星系或不规则星系,质量为银河星系的1/20。小麦哲伦云星系属不规则星系或不规则棒旋矮星系,质量只及银河系的1/100。麦哲伦云星系中的气体含量丰富,中性氢质量分别占它们总质量的9%和32%,都比银河系大得多。但它们的星际尘埃含量却比银河系少,而年轻的星族Ⅰ的天体则很多,有大量的高光度O-B型星;此外,还观测到新星、超新星遗迹,X射线双星等天体。射电资料表明,大小麦哲伦云星系有一个共同的氢云包层;两云之间的中性氢纤维状结构一直伸展到南银极天区,横跨半个天球,称为麦哲伦气流。它们和银河系有物理联系,三者构成一个三重星系。

由于麦哲伦云星系距离我们太遥远,对它们的范围现在还没有一个精确的数字。估计大麦哲伦云星系的直径可能达到4万光年,接近银河系的一半。麦哲伦云星系的恒星分布密度比银河系低得多。大麦哲伦云星系的恒星总数可能不超过50~100亿个;小麦哲伦云星系则只有10~20亿个。两星系的恒星数量加在一起,只及银河系的1/10。因此,有人把它们说成是银河系的两个卫星。

仙女座星系,又称仙女座大星云。它用肉眼可以看见,亮度为4等,看上去像是一颗暗弱、模糊的星系。

同类推荐
  • 飞碟现象未解之谜

    飞碟现象未解之谜

    有一种圆碟状的发光体,它总是不经意地出现在星空中,忽明忽暗在空中飞旋,不停变换着方位和角度。它能在空中旋转,长时间停留,还能发出各种绚丽的光芒——这个在世界各地都曾发现的神秘的物体,引起人们太多的讨论和猜想,成为人类探索宇宙的最大谜题之一。很多人都认为它是外星人到达地球的飞行器,也有人认为它是一种气象或者天文现象,但是至今,也没有一个确切的答案。因为它的外形通常是圆盘,而且闪着光飞翔在宇宙中,人们因而称之为“飞碟”;同时因为它来历不明,又被称为“不明飞行物”(unidentified flying object ),英文简称“UFO”。
  • 文明历程

    文明历程

    本书将中华文明悠久历史沉淀下来的丰富的图文资料融为一体,直观的介绍历史发展进程,全书以字字珠玑的文字,介绍了中国历史的一些基础知识,内容丰富,涵盖众多领域。
  • 硬笔书法技法(最新21世纪生活百科手册)

    硬笔书法技法(最新21世纪生活百科手册)

    楷书是具有一定法则,一笔一画写出来的字体。楷书工整、庄重,应用范围很广。楷书是学习钢笔字入门最适宜的字体。学习楷书,可以提高初学者驾驭笔的能力,掌握基本笔画的书写和各种构字类型的一般规律
  • 地球的脸庞:地貌(地理知识知道点)

    地球的脸庞:地貌(地理知识知道点)

    地球是太空中惟一不需太空探测船即可认识的星体,但是直到20世纪我们才真正勾勒出地球的全貌。地球是太阳系八大行星之一,按离太阳由近及远的次序是第三颗,位于水星和金星之后;在八大行星中大小排行是第四。在浩瀚的宇宙中,地球就像是广阔原野上的一粒灰尘,但是它的形成和发展却经历了十分漫长的过程。地球还是目前人类所知道的惟一一个存在生命体的星球。也是太阳系中直径、质量和密度最大的类地行星。
  • 低碳校园:让我们的学校更美好

    低碳校园:让我们的学校更美好

    《低碳校园--让我们的学校更美好(典藏版)》由宋学军所著,《低碳校园--让我们的学校更美好(典藏版)》旨在引导新时代的青少年一起行动起来,为了我们共同的家园,用自己的实际行动把生活耗用能量降到最低,从而减少二氧化碳的排放,实现绿色低碳生活。低碳生活是一种态度,也是一种责任,更是一种爱,让我们的爱更宽广,更包容,更细致吧!
热门推荐
  • 自巴黎一路南下

    自巴黎一路南下

    一段纸上的环球旅行,世界多国留学生携手旅外青春作家带你体验别样的留学生活和异国游历奇遇。在法国:难忘法国童话般的小镇,邂逅小镇里那个男子;在美国:开车穿越传说中的66号公路,遭遇惊悚的hitchhiker;在日本:一品浪漫的京都小雪;在德国:柏林墙头,一段穿越时光的生死恋;在俄罗斯:体会一个人在异国的独立生活;在印度:亚穆纳河波澜不惊的缓缓流过,有穿着红袍的印度女人,颈子里带着金色的项圈,咖啡色的皮肤美丽的暴露在阳光里,映着亚穆纳河波光粼粼的流水,闪耀的眸子带着夺人的亮光……
  • 宁负荣华:皇上,跟我走

    宁负荣华:皇上,跟我走

    被囚禁的皇帝,受尽凌辱的哑巴宫女。爱情踏着微光来临。可惜永夜之中,即便深爱,也注定无情。他坐在涵元殿正中的龙椅上,神情木然地盯着眼前的一片帐子,帐子朦胧又陈旧,就像他灰蒙蒙的一生,注定要成为一团令人唾弃的烂麻。寇公公低头进来,跪在地上:“回万岁爷,板子……打完了”。“她可还活着?”他的声音轻飘飘的,冰冷无情。“还未断气”寇公公在宫里当了一辈子差,早已心硬如铁,可心里还是涌起一阵酸涩。“哦”,他淡淡应了一声,平静无波道:“撵出去吧”。明黄团福暗纹袖下,他双拳紧握,指甲深深扎入掌心,鲜血似泪流个不停。
  • 奇幻产业革命

    奇幻产业革命

    剑×魔法×机甲=?奇幻×炼金×科技=?修电脑的好人雷风穿越到了剑与魔法与魔兽的奇幻世界,虽然本身并没有携带什么绝世珍宝,更不会天下无敌的武功,却凭借着两个世界文明与科技的不同,在异世掀起了一场产业的革命,将现代文明的科学技术,融合到了异世的炼金术与魔法中,生产线生产魔像的工厂,可拆卸替换的魔像零件规范,普通人也能够使用的魔像操作系统,甚至通过魔像技术延伸发展出了机甲魔装,在异世轰轰烈烈打下了一片天地。
  • 制霸老公,请放手

    制霸老公,请放手

    她为了保住父亲生前的心血,被迫和他分手。从此他们形同陌路却又日日相见。他和别人相亲高调喊话,让众人关注。“相亲就相亲,我不在乎,我不在乎,我不在乎!”她无动于衷。正式订婚时她却意外出现,包中藏刀。“你敢和别人结婚,我就敢死在当场。”“张兮兮,是不是我把手里的股份给你,你就会和我睡。”他邪魅的问道。“你就不能把股份分几次给我,多睡几次!”捂脸~~
  • EXO只有我能看见她

    EXO只有我能看见她

    知道吗?我是个很容易满足的……鬼。只要有人能看见我,我就能开心好久。哪怕他们不能听见我的声音。可能你们喜欢她,但你们相信吗?那是我的身体。为什么不愿意相信我?EXO:对不起,原谅我们……从前的我可能想都不想就会原谅吧!因为那时候我是个鬼,我没有资格拒绝。但是,现在……我是人,我有爱我的人,不是那个没有人喜欢的鬼了。所以我……
  • 送王昌龄

    送王昌龄

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 少年记

    少年记

    一个平民家出生的孩子。因为灵魂的强大而被一个老人收为弟子。从此鲤鱼跃龙门。打破囚笼,纵横于宇宙万族之间。斩神禽,灭天兽,最终带领人族走向巅峰。
  • 天才神医:呆萌王妃不好惹

    天才神医:呆萌王妃不好惹

    她,蓝馨月,一个腹黑、傲娇、毒舌、漂亮、善良、可爱、呆萌集一身的绝世神医。她救死扶伤,做了很多的好事,却因为半夜看小说,而很不凑巧的穿越到了小说中的即将领盒饭的恶毒女配——蓝馨月的身上。好吧,穿就穿了,姐知道剧情的发展,所以姐不在乎,但为什么剧情会慢慢的变得与原剧情不一样呢?当腹黑面对腹黑,傲娇面对霸道,又会擦出怎样的火花呢?
  • 糖尿病自我健康管理全书

    糖尿病自我健康管理全书

    《糖尿病自我健康管理全书》针对糖尿病这一常见病,从健康教育、饮食调理、适当运动、药物治疗、自我监控五方面出发,结合糖尿病患者的生活起居和日常饮食,注重饮食调理、心理呵护以及并发症的防治,详细地讲解了与糖尿病发生有关的危险因素和不良生活方式,以及药物防控糖尿病的方法和糖尿病病情的监控等方面的知识。从生活的各个方面为糖尿病患者提供了一种全面而健康的生活方式和调养方法,能够对减少糖尿病的发生和危害、提高公众生活质量产生较好的指导作用。
  • 神帝逆修传

    神帝逆修传

    神帝之尊,六界命轮;亘古混沌,救亡图存。一代神帝玄烨,被属下以献宝为名谋害,让一块神秘黑石冲到自己的气海当中。结果,玄烨的修为每况愈下,时间越长,自己的境界就越低……失势无亲友,宿敌上门来!逃亡途中,玄烨千方百计保全性命,却不经意间发现了一个又一个密谋,孤身冒险一步步找到那幕后黑手……本书没有转世重修,也没有穿越重生,更没有得到逆天宝物,从废材变天才等等……讲的是神帝玄烨从境界最高之处,一步步衰退,变成毫无修为的凡人这一过程的迷离故事。【小七心很大,想要开创新的小说流派,不知道读者朋友会不会喜欢这一类,姑且称之为逆修流。从最高境界,一步步跌落到最低境界,故称之为逆修!】