登陆注册
19984200000005

第5章

This being clear, we must go on to consider the questions which remain.First, is there an infinite body, as the majority of the ancient philosophers thought, or is this an impossibility? The decision of this question, either way, is not unimportant, but rather all-important, to our search for the truth.It is this problem which has practically always been the source of the differences of those who have written about nature as a whole.So it has been and so it must be; since the least initial deviation from the truth is multiplied later a thousandfold.Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter.The reason is that a principle is great rather in power than in extent; hence that which was small at the start turns out a giant at the end.Now the conception of the infinite possesses this power of principles, and indeed in the sphere of quantity possesses it in a higher degree than any other conception; so that it is in no way absurd or unreasonable that the assumption that an infinite body exists should be of peculiar moment to our inquiry.The infinite, then, we must now discuss, opening the whole matter from the beginning.

Every body is necessarily to be classed either as simple or as composite; the infinite body, therefore, will be either simple or composite.

But it is clear, further, that if the simple bodies are finite, the composite must also be finite, since that which is composed of bodies finite both in number and in magnitude is itself finite in respect of number and magnitude: its quantity is in fact the same as that of the bodies which compose it.What remains for us to consider, then, is whether any of the simple bodies can be infinite in magnitude, or whether this is impossible.Let us try the primary body first, and then go on to consider the others.

The body which moves in a circle must necessarily be finite in every respect, for the following reasons.(1) If the body so moving is infinite, the radii drawn from the centre will be infinite.But the space between infinite radii is infinite: and by the space between the radii I mean the area outside which no magnitude which is in contact with the two lines can be conceived as falling.This, I say, will be infinite: first, because in the case of finite radii it is always finite; and secondly, because in it one can always go on to a width greater than any given width; thus the reasoning which forces us to believe in infinite number, because there is no maximum, applies also to the space between the radii.Now the infinite cannot be traversed, and if the body is infinite the interval between the radii is necessarily infinite: circular motion therefore is an impossibility.Yet our eyes tell us that the heavens revolve in a circle, and by argument also we have determined that there is something to which circular movement belongs.

(2) Again, if from a finite time a finite time be subtracted, what remains must be finite and have a beginning.And if the time of a journey has a beginning, there must be a beginning also of the movement, and consequently also of the distance traversed.This applies universally.Take a line, ACE, infinite in one direction, E, and another line, BB, infinite in both directions.Let ACE describe a circle, revolving upon C as centre.In its movement it will cut BB

同类推荐
  • 平胡录

    平胡录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • The Patrol of the Sun Dance Trail

    The Patrol of the Sun Dance Trail

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • Catherine de' Medici

    Catherine de' Medici

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 佛说圣六字大明王陀罗尼经

    佛说圣六字大明王陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • The Secret Sharer

    The Secret Sharer

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 霸道恶少:别惹刁蛮公主

    霸道恶少:别惹刁蛮公主

    她,,是任性的刁蛮公主,,,,他是有权有势的霸道恶少,,,,他在不知不觉中爱她,,,,他们在冥冥中会是怎样的
  • EXO彼岸

    EXO彼岸

    sorry,这是EXO离你最近的地方的文,离你最近的地方小说发不出去,换到这。谢谢
  • 中国:政府管理与改革五十年

    中国:政府管理与改革五十年

    本书包括《中国适应跨世纪发展的行政管理研究》、《中国公共行政迈向二十一世纪》、《社会主义民主理论在实践中的丰富与发展》、《政府部门职能关联与责任行为》等33篇论文。
  • 封界之旅

    封界之旅

    当你走出这个世界,你会发现原来还有一个更大的世界在等你,当你走出这个更大的世界呢?是否还会有一个更大更大的世界呢?
  • 挖呀挖,挖出一个大房子

    挖呀挖,挖出一个大房子

    《知道不知道》系列从地理、历史、生物、天文等各方面进行叙述,探究其深层次的奥秘。每一门类独立成册,帮助孩子们认识和理解所生活的世界,引导他们主动探寻问题和答案,对小学生思维的训练和潜能开发有着重要的影响。纸上魔方编著的《挖呀挖挖出一个大房子》为其中一册。《挖呀挖挖出一个大房子》是一本关于趣味考古科普书籍。经过历史的变迁,有些房子会被深深埋在地底下,而有些房子则光鲜亮丽、完好无损的呈现在世人面前。带着好奇翻开本书,让青少年读者们随同考古学家一起挖出让世人惊叹的文明遗址,并从它们身上探索未知的奥秘。
  • 鬼咒之死亡诗社

    鬼咒之死亡诗社

    小说采用电影镜头剪辑叙事方式结合“草蛇灰线”的小说写作特点,每一章都留下诺隐诺现的意脉,前后文章相互关联照应,为故事发展和人物命运预作铺垫,须前后推敲悬疑才能明白其意,并首次尝试每部小说以独立电影的情景模式呈现。
  • 恋上凤凰男

    恋上凤凰男

    大学毕业,他们偷偷扯证,成了隐婚一族,爱情是他们最引以为豪的资本......世事流转,他的伤害,背叛、让她心灰意冷......她终于遇见了那个对的人,奈何世事嘲讽,在阳光肆意的秋天,他们说了再见......一部小说,一种情怀,一股物是人非的的怅然......一切都回到了七年前,可是心境却不复从前......
  • 米乐的1986

    米乐的1986

    我们坐在护城河旁惟一残留的城墙上,现在是公元二零零九年,这段城墙早在我们出生前就矗立于此,历经岁月的风尘及两次大地震的考验却不慎败在城市规划的脚下,连贯的城墙被轰隆作响的挖掘机扒成了多米诺骨牌的样子,历史的防线被轻易移除,像剪除多余的指甲,只有我们屁股下这截残垣被当做永久性建筑保留起来,以便后人流连时知晓城市是从这里开始并从这里消失的。
  • 宠魅:魔神归来

    宠魅:魔神归来

    数十年相伴,换来时空永隔。谁是谁的羁绊,谁又是谁的执念?花落之间不怨不悔,她逆天而行,它逆天轮回,他逆天重生。三生三世的轮回,只为了有朝一日,可以和他再战,可以将她打败,可以伴它永世,可以与她一世无忧……
  • 花痕之印

    花痕之印

    神话时代的箫音已不知飘向何方,花名紫夜心,传说可以让人失忆。尘缘离落一朝花开,时光被咀嚼得很安静。到人类时代还会上演同样的故事吗?花开又花落,原来我们的日子只是相逢相散。“我们……认识吗?”在落花的世界里,抬头看到的是红色的记忆。坠花湮,湮没一朝风涟,花若怜,绽在谁的胸前?花的结局早已注定,都是凋零。不!有一朵花是盛开……