登陆注册
20059100000010

第10章 7

It follows that we cannot in demonstrating pass from one genus to another. We cannot, for instance, prove geometrical truths by arithmetic. For there are three elements in demonstration: (1) what is proved, the conclusion-an attribute inhering essentially in a genus;

(2) the axioms, i.e. axioms which are premisses of demonstration;

(3) the subject-genus whose attributes, i.e. essential properties, are revealed by the demonstration. The axioms which are premisses of demonstration may be identical in two or more sciences: but in the case of two different genera such as arithmetic and geometry you cannot apply arithmetical demonstration to the properties of magnitudes unless the magnitudes in question are numbers. How in certain cases transference is possible I will explain later.

Arithmetical demonstration and the other sciences likewise possess, each of them, their own genera; so that if the demonstration is to pass from one sphere to another, the genus must be either absolutely or to some extent the same. If this is not so, transference is clearly impossible, because the extreme and the middle terms must be drawn from the same genus: otherwise, as predicated, they will not be essential and will thus be accidents. That is why it cannot be proved by geometry that opposites fall under one science, nor even that the product of two cubes is a cube. Nor can the theorem of any one science be demonstrated by means of another science, unless these theorems are related as subordinate to superior (e.g. as optical theorems to geometry or harmonic theorems to arithmetic). Geometry again cannot prove of lines any property which they do not possess qua lines, i.e. in virtue of the fundamental truths of their peculiar genus: it cannot show, for example, that the straight line is the most beautiful of lines or the contrary of the circle; for these qualities do not belong to lines in virtue of their peculiar genus, but through some property which it shares with other genera.

同类推荐
热门推荐
  • 据说首席结婚了

    据说首席结婚了

    她从小不及姐姐们聪明,却出奇的幸运。幸运到在二十三岁的时候,能够嫁给她这辈子最喜欢的人。偷偷领证、住进他家。可是他不碰她、也不喜欢她。她本来就是个傻瓜,到最后才明白他心里一直住着一个人,那个人不是她。
  • 三种悉地破地狱转业障出三界秘密陀罗尼法

    三种悉地破地狱转业障出三界秘密陀罗尼法

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 佛说稻芋经

    佛说稻芋经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 超级球童

    超级球童

    权达,一个多面的翩翩少年,一面是高尔夫球童,另一面是天才高尔夫少年,球童是认识的起点、球员是成长的路程、当权达站在世界高坛巅峰君临天下之时,感悟到的只是原来我是在为梦行走人生。在他的“人生辞典”里有两个名词:“永不低头”和“永不后退”。“高尔夫球是永远不能向后退的运动,是不能后悔的运动,要坚持打完18洞,不管是低于标准杆,还是100多杆,你都不会后悔么?就像生命,一旦开启,不管好与坏、顺与逆、痛苦与悲哀,都只能向前。”当时代周刊记者这样提问道。权达只是清淡的说道,“如果高尔夫在你的概念里只是一种单纯的运动,那么你还没有真正认识高尔夫;当有一天你发现,高尔夫使你在身体和精神上都有所收获和享受,你会发现你的生活因为有了高尔夫而比过去更加纯净和高贵!”
  • 神氏家族掌门人与EXO

    神氏家族掌门人与EXO

    他喜欢她,她有一群哥哥,她经历了四次失去,她不想要在失去,幸运女神,她的姐姐保佑了她,让她开心;可是幸运女神却没来得及保佑他那帅气的弟弟,死神的降临让所有人陷入了恐慌......(这一本主要是EXO)
  • 幻想系列

    幻想系列

    幻想与真实,徘徊在你的左右,使你迷茫,让你分不清真与假
  • 古灵树奇星

    古灵树奇星

    传说在千万年前,有六位来自神,魔,仙,人,妖,鬼六界的守护者和一位六界的守护者,为了封印六界之外的一股神秘力量“噬魔”而耗尽千年修为。最终这七位守护者的灵化成了一颗种子,由一个非常神秘且无人知晓的轩辕仙族守护着。而在一次失误中,种子生长了。在千百年后,封印开始减弱,噬魔冲破封印,重获自由,而在此时,七位守护着的后人转世,经高人指点,寻找噬魔散落的灵,与噬魔重现千百年前的那一场恶战,又掀起了一场腥风血雨。她的一生,经历了许多非正常人所能承受的痛苦,可却有了一段令人感慨的创世奇缘......
  • 匡天

    匡天

    龙盘六合穷山间,门立八荒归云处,兵破九幽风云乱,横刀斩邪任逍遥,,,那巨石之上,赫然便是:三蛮挥刀正风云,一龙出世匡天下,帝临中州惊雷起,吾持龙渊敬轩辕,,,
  • 哈利波特与最佳配角

    哈利波特与最佳配角

    熟知剧情的重生者,在哈利波特世界的故事。只是作者闲的无聊所写的。。娱乐。小白作者,不喜绕道。不定期更新。
  • 魔兽制空为王

    魔兽制空为王

    王牌飞行员凌风开着老掉牙的军用运输机穿越进入魔兽争霸的世界,变成了人族的矮人小飞机(直升小飞机其实是矮人的专利)(这是披着小飞机外壳的军用运输机)。在这个普通的人族少女都可以轻松KO他的世界,他只想当个安静的美男子。可惜不死族好,人族好,各族总是让他不得消停。要玩就玩个大的,秉承王牌飞行员理念的他,只想告诉这个世界,什么是制空权为王。