登陆注册
20059100000024

第24章 21

Further, if in affirmative demonstration the series terminates in both directions, clearly it will terminate too in negative demonstration. Let us assume that we cannot proceed to infinity either by ascending from the ultimate term (by 'ultimate term' I mean a term such as was, not itself attributable to a subject but itself the subject of attributes), or by descending towards an ultimate from the primary term (by 'primary term' I mean a term predicable of a subject but not itself a subject). If this assumption is justified, the series will also terminate in the case of negation. For a negative conclusion can be proved in all three figures. In the first figure it is proved thus: no B is A, all C is B. In packing the interval B-C we must reach immediate propositions--as is always the case with the minor premiss--since B-C is affirmative. As regards the other premiss it is plain that if the major term is denied of a term D prior to B, D will have to be predicable of all B, and if the major is denied of yet another term prior to D, this term must be predicable of all D. Consequently, since the ascending series is finite, the descent will also terminate and there will be a subject of which A is primarily non-predicable. In the second figure the syllogism is, all A is B, no C is B,..no C is A. If proof of this is required, plainly it may be shown either in the first figure as above, in the second as here, or in the third. The first figure has been discussed, and we will proceed to display the second, proof by which will be as follows: all B is D, no C is D..., since it is required that B should be a subject of which a predicate is affirmed. Next, since D is to be proved not to belong to C, then D has a further predicate which is denied of C. Therefore, since the succession of predicates affirmed of an ever higher universal terminates, the succession of predicates denied terminates too.

The third figure shows it as follows: all B is A, some B is not C.

Therefore some A is not C. This premiss, i.e. C-B, will be proved either in the same figure or in one of the two figures discussed above. In the first and second figures the series terminates. If we use the third figure, we shall take as premisses, all E is B, some E is not C, and this premiss again will be proved by a similar prosyllogism. But since it is assumed that the series of descending subjects also terminates, plainly the series of more universal non-predicables will terminate also. Even supposing that the proof is not confined to one method, but employs them all and is now in the first figure, now in the second or third-even so the regress will terminate, for the methods are finite in number, and if finite things are combined in a finite number of ways, the result must be finite.

Thus it is plain that the regress of middles terminates in the case of negative demonstration, if it does so also in the case of affirmative demonstration. That in fact the regress terminates in both these cases may be made clear by the following dialectical considerations.

同类推荐
  • 三宝感应要略录

    三宝感应要略录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • CLIGES

    CLIGES

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 平濠记

    平濠记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 搜神后记

    搜神后记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 耄余杂识

    耄余杂识

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 史海寻踪:戴逸传

    史海寻踪:戴逸传

    戴逸教授是我国当代在海内外有重要影响的著名历史学家,尤其是对于有清一代的历史,无论是在以其个人的研究成果开拓研究领域方面;或者是以其声望与影响推动研究事业的发展而论,都建树丰硕,贡献卓著,实处于执牛耳的翘楚地位。《史海寻踪(戴逸传)》是戴逸先生的传记。《史海寻踪(戴逸传)》从戴逸先生幼年起生活环境,其在少年、青年时代走过的学习和生活道路,乃至于逐渐形成了性格、志趣、理想、爱好、对其日后人生道路的选择,都进行了详细的介绍。本书由高亚鸣著。
  • 卿本无念

    卿本无念

    洛无念本是万千宠爱于一身的小公主,却不想一朝沦为通缉犯,复仇的道路太艰辛,但是,哪怕万劫不复,也要把自己失去的一样一样讨回来!
  • 异能重生:逆天女医师

    异能重生:逆天女医师

    大难不死得以脱胎换骨,落难千金偶遇世外高人,读心术,失传古武,独门医术,以及万金难寻的炼药之术。十年,她由娇弱的小女孩,蜕变成神秘宗门高手,身携异能,逆天而行,关注本文,与女主一起,用异能征服现代都市。
  • 造化仙境

    造化仙境

    探险地,寻秘境,修仙正进行。险地里的古宝,秘境中的神通,这是我修行的人生;符初绘,丹已成,飞剑在长鸣。修仙之路上,历劫是我的宿命,长生是不变的追寻。我欲成仙,佛挡杀佛,神挡杀神。
  • 盖聂都市逍遥录

    盖聂都市逍遥录

    战国末年,有一剑术宗师号曰:剑圣,名为盖聂。一生痴迷于剑!令人惊讶的是,盖聂竟然是盘古转世!鸿钧竟是害死盘古的真凶!在原始的引导下,盖聂渐渐恢复前世记忆并前去复仇!但盘古转世的消息,鸿钧早已知晓,并设下灭世大阵等着盖聂…盖聂身陷大阵,力竭而死!临死之际,自爆混沌之体,六道轮回!重生之后的盖聂,会是怎样呢…
  • 浩南剑圣

    浩南剑圣

    大千世界,诸圣并起。百家争霸,群雄林立。苍天茫茫百家争,大地野野谁主宰?一位少年,一次穿越让他走入了蛮荒之地。“我欲修仙,御剑逆天。我欲称帝,扬指诛仙。”以剑之心,征剑道,破苍穹,转乾坤。剑光剑芒剑下魂,繁花剑影葬修罗。气破万军踏血沫,仰天杀吼破苍穹!行走于天下,悟剑道,挥剑封天,终成一代剑圣。
  • 多斯的城堡

    多斯的城堡

    露西·莫德·蒙哥马利十分檀长描绘生活与我们遇到的普通人和与众不同的人。情节十分新颖,引人入胜,里面还有世界上最甜蜜的爱情。《多斯的城堡》最重要的是它所传递出的信息:接受你自己,无论其他人怎样说,勇敢地去做自己。这个对我来说很难做到,但是这《多斯的城堡》的故事激励我开始享受自己的生活,接受我自己!
  • 王爷后院着了火:拽拽王妃斗夫记

    王爷后院着了火:拽拽王妃斗夫记

    “王爷,王妃不见了,好像是跟太子游山玩水去了。”老管家气喘吁吁地跑来报告。某王爷:“派几个杀手去把抓回来就是了,这样的小事不要烦我。”然后,他家后院就着火了。
  • 七煞破天录

    七煞破天录

    景默因父体质影响,无法凝灵结丹进阶灵者,却在冲击灵者数次失败而意外灵魂力大涨,更机缘神奇功法与那七彩幻灵草,从而体质变异开始踏上步向巅峰之路的征程。天地阴阳五行万物,七煞成,可破天。好男儿顶天立地,应当傲视天下,无所畏惧。人若欺我,必将杀之,天若辱我,撕破那天。七煞首群:221483202欢迎书友们的加入。
  • 独家盛宠:天价新娘

    独家盛宠:天价新娘

    郝染流年不利,新总裁的迎接宴上华丽丽的将美食撞在了刚要进场的总裁大人身上!偏偏这位总裁还是她以前甩掉的前男友,哦,Myga,简直是狭路相逢,谁知宴会上被他灌酒醉的不醒人事,还被当成礼物送进了他的房间。“你不就是想勾引我对你旧情复燃,别耍手段了……”是可忍,孰不可忍,他大爷的,谁要勾引他。于是一纸辞职书递上,可是却被扼杀在他手里,最后还被逼成他的贴身助理。可想而知,她今后的日子像进了地狱般,只是为何每当她狼狈的时候他总会在最关键时出现,在她家族企业面临破产时,他说。“我用十亿救你父亲的公司,但前提是你得嫁给我。”如果你是我种下的前因,那么我又是谁的果报?【纯属虚构,请勿模仿】