登陆注册
20059100000006

第6章 4(2)

In another sense again (b) a thing consequentially connected with anything is essential; one not so connected is 'coincidental'. An example of the latter is 'While he was walking it lightened': the lightning was not due to his walking; it was, we should say, a coincidence. If, on the other hand, there is a consequential connexion, the predication is essential; e.g. if a beast dies when its throat is being cut, then its death is also essentially connected with the cutting, because the cutting was the cause of death, not death a 'coincident' of the cutting.

So far then as concerns the sphere of connexions scientifically known in the unqualified sense of that term, all attributes which (within that sphere) are essential either in the sense that their subjects are contained in them, or in the sense that they are contained in their subjects, are necessary as well as consequentially connected with their subjects. For it is impossible for them not to inhere in their subjects either simply or in the qualified sense that one or other of a pair of opposites must inhere in the subject; e.g. in line must be either straightness or curvature, in number either oddness or evenness. For within a single identical genus the contrary of a given attribute is either its privative or its contradictory; e.g. within number what is not odd is even, inasmuch as within this sphere even is a necessary consequent of not-odd. So, since any given predicate must be either affirmed or denied of any subject, essential attributes must inhere in their subjects of necessity.

Thus, then, we have established the distinction between the attribute which is 'true in every instance' and the 'essential' attribute.

I term 'commensurately universal' an attribute which belongs to every instance of its subject, and to every instance essentially and as such; from which it clearly follows that all commensurate universals inhere necessarily in their subjects. The essential attribute, and the attribute that belongs to its subject as such, are identical. E.g. point and straight belong to line essentially, for they belong to line as such; and triangle as such has two right angles, for it is essentially equal to two right angles.

An attribute belongs commensurately and universally to a subject when it can be shown to belong to any random instance of that subject and when the subject is the first thing to which it can be shown to belong. Thus, e.g. (1) the equality of its angles to two right angles is not a commensurately universal attribute of figure.

For though it is possible to show that a figure has its angles equal to two right angles, this attribute cannot be demonstrated of any figure selected at haphazard, nor in demonstrating does one take a figure at random-a square is a figure but its angles are not equal to two right angles. On the other hand, any isosceles triangle has its angles equal to two right angles, yet isosceles triangle is not the primary subject of this attribute but triangle is prior. So whatever can be shown to have its angles equal to two right angles, or to possess any other attribute, in any random instance of itself and primarily-that is the first subject to which the predicate in question belongs commensurately and universally, and the demonstration, in the essential sense, of any predicate is the proof of it as belonging to this first subject commensurately and universally: while the proof of it as belonging to the other subjects to which it attaches is demonstration only in a secondary and unessential sense.

Nor again (2) is equality to two right angles a commensurately universal attribute of isosceles; it is of wider application.

同类推荐
  • 山店

    山店

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 通天逸叟高禅师语录

    通天逸叟高禅师语录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 呃门

    呃门

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 古玩指南

    古玩指南

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 钦定词谱

    钦定词谱

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 痛觉残留

    痛觉残留

    “从今天起,你就叫纯吧。”他对我温和的笑着,伸出手摸了摸我的头。失去记忆的纯,收留纯的岚,两个人看似平静温暖的生活却很快就被打破。岚的过去牵扯出纯痛苦的记忆,直至最后,终于无法挽回。“你……也想要抛弃我吗……?”
  • 异界科技武装

    异界科技武装

    你说火枪是玩具?忘记告诉你老子用的是巴雷特。——余波一个地球科学家因为英雄救美,而惨剧的被歹徒刺死后,灵魂穿越来到龙舌大陆的故事。在这个气功师决定一切的世界里,有着刚开始萌芽的被称为鸡肋的科技。但是科技真的只是会发光的灯泡吗?一个地球的疯子发明家,依靠着脑袋里疯狂的发明点子,在气功修炼道路上用科技的力量全面武装自己。
  • 攻心为上专属腹黑学霸

    攻心为上专属腹黑学霸

    在竞争激烈的一中,很多人都羡慕林子溱有个大神罩着。然而,也只有林子溱一个人知道,表面上如霁月般清冷温和的许尧,实际上是多么的霸道难缠。该奴役她的,一样也不会少;还另外管起她的学习,生活,恋爱?都说大神在手,天下我有。她现在怎么有些后悔去招惹他了呢。新文《仙途拒撩:上神快走开》《总攻女王:扑倒小受太子爷》
  • 少年不要错过爱

    少年不要错过爱

    十七岁的官若晓莫名其妙的进了诺岚奥斯贵族学院只有十大家族的人才可以进的内院,官若晓不知道她是还哭还还是该笑。在内院外院千金小姐的讽刺下勇敢地生活,废话!她可是打不死得小强!但悲催的是她竟然和三个男生在同一个宿舍里。ohmygod,校长把治老年痴呆的药当糖豆吃了吗?银发的冷酷帅哥、金发的萌系帅哥、灰发的神秘帅哥,她会和他们发生一段怎样的故事……
  • 断天诀

    断天诀

    “我敛此生无再绝,必后诛天我霆逍。我炼断天,入神魔。断天在手,天下我有。午觉灵破,在上至尊。万灵屠魇,忌焚灵犀。我定诛天,神梦灵尊。”
  • 冷艳女杀手的复仇之行

    冷艳女杀手的复仇之行

    五年前,一次任务失败,四个挚友葬身于机关重重的丧尸地下室,只有她一人幸存了下来,面对挚友们的意外离去,几乎接近精神崩溃,消沉了一段日子,她誓死要找到当年制造地下室丧尸事件的凶手,最后化身成为各个地下黑组织听到名字都感到唏嘘的冷艳杀手,自由、独来独往、不需要任何伙伴、拿钱替人办事就是她的作风,在复仇的道路上她将会有什么样的邂逅,而几个合作上的伙伴将会带给她什么样的改变,当年丧尸地下室的凶手最后能否找到..........
  • 青春初恋手册:勿忘我

    青春初恋手册:勿忘我

    立夏,可爱乐观的林未亚与腹黑冷漠的藤井寒,因一辆洒水车而邂逅,这个浑身散发着冷漠忧郁的男生瞬间吸引了未亚所有的注意。在一系列的倒追行动中,未亚终于发现藤井寒内心的缺失与隐藏的秘密,于是倍加努力,希望能让井寒重新相信真心的存在。
  • 晓生看历史

    晓生看历史

    每个人似乎都曾幻想过,或睡前,或闲暇,或坐公交车上,都会不由自主地幻想着:比如幻想成超级美女、帅哥,走在大街上被星探发掘,然后一举成名,万千瞩目;幻想成富家弟子,挥金如土,放荡不羁,开豪车,住别墅,游戏在芸芸美女之间;幻想自己拥有绝世武功,惩恶扬善,打抱不平,总在不经意间惊呆所有人,而自己却不留姓名潇洒的离开,引得一众美女阵阵花痴,有时候还有其它稀奇古怪的幻想,逗得自己忍俊不禁“扑哧”一笑。如若有一天,你的右半脑真的脱离现实穿回过去,你想在那里看到什么?而白晓生又看到了什么?
  • 便纵有千种风情

    便纵有千种风情

    柳永,始终行走在宋朝仕途的边缘,他以傲视才情挥就迤逦宋词,他以真心温暖那些倾城女子。想弃了浮华,醉了烟花,终是不舍;想远了脂粉,一心求仕,也未成行。《便纵有千种风情》为散文体传记,以丰富的历史知识为背景,以柳永的词为脉络,运用散文化笔法点评、赏析,进行个性化、情感化解读,展开柳永一生的爱情传奇与功名得丧。
  • 超级进化

    超级进化

    生死就在一瞬间。落魄的他被来自四十年后的自己穿越。成大道,震末世!杀丧尸,除鬼怪!泡明星,得异能!试问,天下之大,何处有高手?可否一战?