登陆注册
20284500000016

第16章

And whether the introducing of things so inconceivable be not a reproach to mathematics?

Qu. 23. Whether inconsistencies can be truths? Whether points repugnant and absurd are to be admitted upon any subjects, or in any science? And whether the use of infinites ought to be allowed as a sufficient pretext and apology for the admitting of such points in geometry?

Qu. 24. Whether a quantity be not properly said to be known, when we know its proportion to given quantities? And whether this proportion can be known but by expressions or exponents, either geometrical, algebraical, or arithmetical? And whether expressions in lines or species can be useful but so far forth as they are reducible to numbers?

Qu. 25. Whether the finding out proper expressions or notations of quantity be not the most general character and tendency of the mathematics? And arithmetical operation that which limits and defines their use?

Qu. 26. Whether mathematicians have sufficiently considered the analogy and use of signs? And how far the specific limited nature of things corresponds thereto?

Qu. 27. Whether because, in stating a general case of pure algebra, we are at full liberty to make a character denote either a positive or a negative quantity, or nothing at all, we may therefore, in a geometrical case, limited by hypotheses and reasonings from particular properties and relations of figures, claim the same licence?

Qu. 28. Whether the shifting of the hypothesis, or (as we may call it) the fallacia suppositionis be not a sophism that far and wide infects the modern reasonings, both in the mechanical philosophy and in the abstruse and fine geometry?

Qu. 29. Whether we can form an idea or notion of velocity distinct from and exclusive of its measures, as we can of heat distinct from and exclusive of the degrees on the thermometer by which it is measured? And whether this be not supposed in the reasonings of modern analysts?

Qu. 30. Whether motion can be conceived in a point of space? And if motion cannot, whether velocity can? And if not, whether a first or last velocity can be conceived in a mere limit, either initial or final, of the described space?

Qu. 31. Where there are no increments, whether there can be any ratio of increments? Whether nothings can be considered as proportional to real quantities? Or whether to talk of their proportions be not to talk nonsense? Also in what sense we are to understand the proportion of a surface to a line, of an area to an ordinate?

And whether species or numbers, though properly expressing quantities which are not homogeneous, may yet be said to express their proportion to each other?

Qu. 32. Whether if all assignable circles may be squared, the circle is not, to all intents and purposes, squared as well as the parabola? Of whether a parabolic area can in fact be measured more accurately than a circular?

Qu. 33. Whether it would not be righter to approximate fairly than to endeavour at accuracy by sophisms?

Qu. 34. Whether it would not be more decent to proceed by trials and inductions, than to pretend to demonstrate by false principles?

Qu. 35. Whether there be not a way of arriving at truth, although the principles are not scientific, nor the reasoning just? And whether such a way ought to be called a knack or a science?

Qu. 36. Whether there can be science of the conclusion where there is not evidence of the principles? And whether a man can have evidence of the principles without understanding them? And therefore, whether the mathematicians of the present age act like men of science, in taking so much more pains to apply their principles than to understand them?

Qu. 37. Whether the greatest genius wrestling with false principles may not be foiled? And whether accurate quadratures can be obtained without new postulata or assumptions? And if not, whether those which are intelligible and consistent ought not to be preferred to the contrary? See sect. 28 and 29.

Qu. 38. Whether tedious calculations in algebra and fluxions be the likeliest method to improve the mind? And whether men's being accustomed to reason altogether about mathematical signs and figures doth not make them at a loss how to reason without them?

Qu. 39. Whether, whatever readiness analysts acquire in stating a problem, or finding apt expressions for mathematical quantities, the same doth necessarily infer a proportionable ability in conceiving and expressing other matters?

Qu. 40. Whether it be not a general case or rule, that one and the same coefficient dividing equal products gives equal quotients? And yet whether such coefficient can be interpreted by o or nothing? Or whether any one will say that if the equation 2 o = 5 o be divided by o , the quotients on both sides are equal? Whether therefore a case may not be general with respect to all quantities and yet not extend to nothings, or include the case of nothing? And whether the bringing nothing under the notion of quantity may not have betrayed men into false reasoning?

Qu. 41. Whether in the most general reasonings about equalities and proportions men may not demonstrate as well as in geometry? Whether in such demonstrations they are not obliged to the same strict reasoning as in geometry? And whether such their reasonings are not deduced from the same axioms with those in geometry? Whether therefore algebra be not as truly a science as geometry?

同类推荐
  • 金刚錍

    金刚錍

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • O PIONEERS!

    O PIONEERS!

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 佛说出家功德经

    佛说出家功德经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 廉明公案

    廉明公案

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 一切如来名号陀罗尼经

    一切如来名号陀罗尼经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
热门推荐
  • 幸福最浓郁

    幸福最浓郁

    一缕阳光透过窗户温暖的洒下,将正在冥想的女孩笼罩在一片光晕中。杰仔放下手中整理的行李,用手臂将娜娜环住。“娜娜,既然舍不得,就留下吧,炅哥他们都在。”原本的蜜月因为他的工作突然提前而不得不结束,任何人都不会开心的。“哪有夫妻在蜜月还分开的?”转过身,将头深深埋在杰仔的胸口,“只是时间太短。”虽然决定和他回国,可娜娜的心里仍然堵得慌。“宝贝,等下次有空我们再来,就当补过蜜月。”她的心思他比任何人都清楚,伸出手抚摸着她松软的头发。两人就这样抱着,静静地享受着他们的美好。
  • 三生劫:妾本无心

    三生劫:妾本无心

    时光,就像是一场笑话,亦或是一场戏,亦或是南柯一梦,而我们却忘记了自己也只是这其中的一员,往往迷失自己,让自己的心也跌落在了这场自导自演的时光中!夏凉心,现代中让自己迷失在爱情里,最后死在爱情的温柔陷阱里,。夏舞心,古代中被自己亲人所杀害,被爱人抛弃。夏无心,也坠入了爱情的深渊……当一切回忆摊开,这三人又会如何处理自己的爱情。她,还是否会动心?是否还会再次相信他呢?
  • 武神闯异界

    武神闯异界

    龙啸天,一个以武成神的神话,被扰乱空间的龙族魔法带到了异世界,开始了他的冒险。什么神,什么魔,什么精英,什么王者,什么贵族,都是虚伪的化身,一个棋盘上的棋子。一个阴谋……
  • 断天

    断天

    这条路我会一个人走下去,哪怕这天也会阻拦我......天若阻我,我便断天!
  • 网王同人:安之若素

    网王同人:安之若素

    因为他的离开,她毅然退出网坛,放下了七年来都不曾放弃的网球。从美国回到日本,遇到了众位王子。幸村:“我会等你,等你可以将他放下。如果你还是无法将他放下,那么,可以在你心里给我一点位置吗?”不二:“我知道你心里有他,但我还是不会放弃。”龙马:“你心里为什么只有他,就因为他比我早一步认识你?为什么你从小开始心里就只有他?连一点位置也不给我。”谦也:“我输了,我多么希望能比他们早点认识你。”面对他们的爱,她感到从未有过的迷茫。但她始终无法忘记心中的少年——是个风一样的少年,永远徘徊在人世间,却不属于任何地方。因为很喜欢网王,所以才写,改动了一些地方。第一次写文,不好的地方请见谅,希望大家喜欢。
  • 喵在你身边

    喵在你身边

    男神是猫奴怎么破?变成猫!一次意外的生日愿望,一次古怪的角色变换,躲在暗处的袭击者。是谁,主导了这一切?
  • 霸道总裁王俊凯我喜欢你

    霸道总裁王俊凯我喜欢你

    不是一次偶遇,只是从小的青梅竹马,但每次都是令人捉摸不透的分手,又是让人永远也搞不清楚的关系,两个组合,但却永远只有一对最后会幸福美满,没有一辈子的延续,只有分分离离的断断续续
  • 太阳雨里的爱情

    太阳雨里的爱情

    那些年你有没有承诺或被承诺过?那么最后,那些承诺实现了么。
  • 魔兽刀塔异界游

    魔兽刀塔异界游

    我叫李军,现在很多人看不起我,说我是个战五渣,不就是靠着兵力强,靠着英雄多,靠着武器好,靠着部下够忠心,才能四处欺负人,四处耀武扬威,四处收美女吗?对于这些说法,我想说的是:对呀!
  • 竹马钢琴师Ⅱ

    竹马钢琴师Ⅱ

    大学的一次相聚,成就了初末和流年的再遇。三年前,她是他最宠爱的“末宝”;三年后,却变成了他最恨的女人。杨初末再次回来的时候,他依旧是那个万众瞩目的钢琴天神,却不是把她视为“末宝”的慕流年了。他变得对她极度冷漠、轻视和疏远,让她眼睁睁地看着他跟别的女人的亲昵,这深深地伤了初末的心。 为了让自己变得更好,初末踏入钢琴界,只为缩短两人之间的差距。却不想她的努力换回的并不是他的肯定,而是各种扑面而来的流言蜚语,其中真真假假,假假真真,将她离开的三年间发生的一切全然曝光……