登陆注册
4785000000003

第3章 宇宙起源之谜(2)

随着天文观测技术的发展,人们看到,确实像布鲁诺所说的那样,恒星是遥远的太阳。人们还进一步认识到,银河是由无数个太阳系组成的大星系。我们的太阳系处在银河系的边缘,围绕着银河系的中心旋转,转速大约每秒250公里,围绕银心转一圈约需2.5亿年。太阳系的直径充其量约1光年,而银河系的直径则高达10万光年。银河系由100多亿颗恒星组成,太阳系在银河系中的地位,真像一粒砂子处在北京城中。后来又发现我们的银河系还与其他银河系组成更大的星系团,星系团的直径约为1000万光年。目前,望远镜观测距离已达100亿光年以上在所见的范围内,有无数的星系团存在,这些星系团不再组成更大的团,而是均匀各向同性地分布着。这就是说,在107光年的尺度以下,物质是成团分布的。卫星绕着行星转动,行星、彗星则绕着恒星转动,形成一个个太阳系。这些太阳系分别由一个、两个、三个或更多个太阳以及它们的行星组成。有两个太阳的称为双星系有三个以上太阳的称为聚星系成千上亿个太阳系聚集在一起,形成银河系组成银河系的恒星(太阳系)都围绕着共同的重心——银心转动。无数的银河系组成星系团,团中的各银河系同样也围绕它们共同的重心转动。但是,星系团之间,不再有成团结构。各个星系团均匀地分布着,无规则地运动着。从我们地球上往四面八方看,情况都差不多。粗略地说,星系团有点像容器中的气体分子,均匀分布着,做着无规则运动。这就是说,在108光年(一亿光年)的尺度以上,宇宙中物质的分布不再是成团的,而是均匀分布的。

由于光的传播需要时间,我们看到的距离我们一亿光年的星系,实际上是那个星系一亿光年以前的样子。所以,我们用望远镜看到的,不仅是空间距离遥远的星系,而且是它们的过去。从望远镜看来,不管多远距离的星系团,都均匀各向同性地分布着。因而我们可以认为,宇观尺度上(105光年以上)物质分布的均匀状态,不是现在才有的,而是早巳如此。

于是,天体物理学家提出一条规律,即所谓宇宙学原理。这条原理说,在宇观尺度上,三维空间在任何时刻都是均匀各向同性的。现在看来,宇宙学原理是对的。所有的星系都差不多,都有相似的演化历程。因此我们用望远镜看到的遥远星系,既是它们过去的形象,也是我们星系过去的形象。望远镜不仅在看空间,而且在看时间,在看我们的历史。

2.有限而无边的宇宙

爱因斯坦发表广义相对论后,考虑到万有引力比电磁力弱得多,不可能在分子、原子、原子核等研究中产生重要的影响,因而他把注意力放在了天体物理上。他认为,宇宙才是广义相对论大有用武之地的领域。

爱因斯坦1915年发表广义相对论,1917年就提出一个建立在广义相对论基础上的宇宙模型。这是一个人们完全意想不到的模型。在这个模型中,宇宙的三维空间是有限无边的,而且不随时间变化。以往人们认为,有限就是有边,无限就是无边。爱因斯坦把有限和有边这两个概念区分开来。

一个长方形的桌面,有确定的长和宽,也有确定的面积,因而大小是有限的。同时它有明显的四条边,因此是有边的。如果有一个小甲虫在它上面爬,无论朝哪个方向爬,都会很快到达桌面的边缘。所以桌面是有限有边的二维空间。如果桌面向四面八方无限伸展,成为欧氏几何中的平面,那么,这个欧氏平面是无限无边的二维空间。

我们再看一个篮球的表面,如果篮球的半径为r,那么球面的面积是4m2,大小是有限的。但是,这个二维球面是无边的。假如有一个小甲虫在它上面爬,永远也不会走到尽头。所以,篮球面是一个有限无边的二维空间。

按照宇宙学原理,在宇观尺度上,三维空间是均匀各向同性的。爱因斯坦认为,这样的三维空间必定是常曲率空间,也就是说空间各点的弯曲程度应该相同,即应该有相同的曲率。由于有物质存在,四维时空应该是弯曲的。三维空间也应是弯的而不应是平的。爱因斯坦觉得,这样的宇宙很可能是三维超球面。三维超球面不是通常的球体,而是二维球面的推广。通常的球体是有限有边的,体积是3/4Trr3,它的边就是二维球面。三维超球面是有限无边的,生活在其中的三维生物(例如我们人类就是有长、宽、高的三维生物),无论朝哪个方向前进均碰不到边。假如它一直朝北走,最终会从南边走回来。

宇宙学原理还认为,三维空间的均匀各向同性是在任何时刻都保持的。爱因斯坦觉得其中最简单的情况就是静态宇宙,也就是说,不随时间变化的宇宙。这样的宇宙只要在某一时刻均匀各向同性,就永远保持均匀各向同性。

爱因斯坦试图在三维空间均匀各向同性且不随时间变化的假定下,求解广义相对论的场方程。场方程非常复杂,而且需要知道初始条件(宇宙最初的情况)和边界条件(宇宙边缘处的情况)才能求解。本来,解这样的方程是十分困难的事情,但是爱因斯坦非常聪明,他设想宇宙是有限无边的,没有边自然就不需要边界条件。他又设想宇宙是静态的,现在和过去都一样,初始条件也就不需要了。再加上对称性的限制(要求三维空间均匀各向同性),场方程就变得好解多了。但还是得不出结果。反复思考后,爱因斯坦终于明白了求不出解的原因:广义相对论可以看作万有引力定律的推广,只包含“吸引效应”不包含“排斥效应”。而维持一个不随时间变化的宇宙,必须有排斥效应与吸引效应相平衡才行。这就是说,从广义相对论场方程不可能得出“静态”宇宙。要想得出静态宇宙,必须修改场方程。于是他在方程中增加了一个“排斥项”,叫做宇宙项。这样,爱因斯坦终于计算出了一个静态的、均匀各向同性的、有限无边的宇宙模型。一时间大家非常兴奋,科学终于告诉我们,宇宙是不随时间变化的,是有限无边的。看来,关于宇宙有限还是无限的争论似乎可以画上一个句号了。

3.宇宙的“宇宙模型”之说

几年之后,一个名不见经传的前苏联数学家弗利德曼,应用不加宇宙项的场方程,得到一个膨胀的或脉动的宇宙模型。弗利德曼宇宙在三维空间上也是均匀、各向同性的,但是,它不是静态的。这个宇宙模型随时间变化,分三种情况。第一种情况,三维空间的曲率是负的第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的第三种情况,三维空间的曲率是正的。前两种情况,宇宙不停地膨胀第三种情况,宇宙先膨胀,达到一个极大值后开始收缩,然后再膨胀,再收缩……因此第三种宇宙是脉动的。弗利德曼的宇宙最初发表在一个不太着名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。爱因斯坦得知这类膨胀或脉动的宇宙模型后,十分兴奋。他认为自己的模型不好,应该放弃,弗利德曼模型才是正确的宇宙模型。

同时,爱因斯坦宣称,自己在广义相对论的场方程上加宇宙项是错误的,场方程不应该含有宇宙项,而应该是原来的老样子。但是,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼再也收不回去了。后人没有理踩爱因斯坦的意见,继续讨论宇宙项的意义。今天,广义相对论的场方程有两种,一种不含宇宙项另一种含宇宙项,都在专家们的应用和研究中。

系的光谱还有紫移现象。这些现象可以用多普勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,即光谱线向长波方向移动的现象。反之,向着我们i来的光源,光谱线会向短波[动,出现紫移现象。这种现象与声音的多普勒效应相似。许多过这样的感受:迎面而来的鸣笛声特别尖锐刺耳远离我们而去的火车其鸣笛声则明显迟这就是声波的多普勒效应,迎面而来的声源发出的声波,我们感到其频率升高,远离我们而去的声源发出的声波,我们则感到其频率降低。

如果认为星系的红移、紫移是多普勒效应,那么大多数星系都在远离我们,只有个别星系向我们靠近。随之进行的研究发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们银河系所在的星系团称本星系团)。本星系团中的星系:多数红移,少数紫移而其他星系团中的星系就全是红移了。

1929年,美国天文学家哈勃总结了当时的一些观测数据,提出一条经验规律,河外星系(即我们银河系之外的其他银河系)的红移大小正比于它们离开我们银河系中心的距离。由于多普勒效应的红移量与光源的速度成正比。所以,上述定律又表述为:河外星系的退行速度与它们离我们的距离成正比:

式中V是河外星系的退行速度,D是它们到我们银河系中心的距离。这个定律称为哈勃定律,比例常数H称为哈勃常数。按照哈勃定律,所有的河外星系都在远离我们,而且,离我们越远的河外星系,逃离得越快。

哈勃定律反映的规律与宇宙膨胀理论正好相符。个别星系的紫移可以这样解释:本星系团内部各星系要围绕它们的共同重心转动,因此总会有少数星系在一定时间内向我们的银河系靠近。这种紫移现象与整体的宇宙膨胀无关。

哈勃定律大大支持了弗利德曼的宇宙模型。不过,如果査看一下当年哈勃得出定律时所用的数据图,人们会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢于断定这些点应该描绘成一条直线呢?一个可能的答案是:哈勃抓住了规律的本质,抛开了细节另一个可能是,哈勃已经知道当时的宇宙膨胀理论,所以大胆认为自己的观测与该理论一致。以后的观测数据越来越精,数据图中的点也越来越集中在直线附近,哈勃定律终于被大量实验观测所确认。

4.宇宙到底有限还是无限

现在,我们又回到前面的话题,宇宙到底有限还是无限?有边还是无边对此,我们从广义相对论,大爆炸宇宙模型和天文观测的角度来探讨这一问题。

满足宇宙学原理(三维空间均匀各向同性)的宇宙,肯定是无边的。但是否有限,却要分三种情况来讨论。

如果三维空间的曲率是正的,那么宇宙将是有限无边的。不过,它不同于爱因斯坦的有限无边的静态宇宙,这个宇宙是动态的,将随时间变化,不断地脉动,不可能静止。这个宇宙从空间体积无限小的奇点开始爆炸、膨胀。此奇点的物质密度无限大。温度无限高空间曲率无限大、四维时空曲率也无限大。在膨胀过程中宇宙的温度逐渐降低,物质密度、空间曲率和时空曲率都逐渐减小。体积膨胀到一个最大值后,将转为收缩。在收缩过程中,温度重新升髙,物质密度、空间曲率和时空曲率逐渐增大,最后到达一个新奇点。许多人认为,这个宇宙在到达新奇点之后将重新开始膨胀。显然,这个宇宙的体积是有限的,这是一个脉动的、有限无边的宇宙。

如果三维空间的曲率为零,也就是说,三维空间是平直的(宇宙中有物质存在,四维时空是弯曲的),那么这个宇宙一开始就具有无限大的三维体积,这个初始的无限大三维体积是奇异的(即“无穷大”的奇点)。大爆炸就从这个“无穷大”奇点开始,爆炸不是发生在初始三维空间中的某一点,而是发生在初始三维空间的每一点,即大爆炸发生在整个“无穷大”奇点上。这个“无穷大”奇点,温度无限髙、密度无限大、时空曲率也无限大(三维空间曲率为零)。爆炸发生后,整个“奇点”开始膨胀,成为正常的非奇异时空,温度、密度和时空曲率都逐渐降低。这个过程将永远地进行下去。这是一种不大容易理解的图像:一个无穷大的体积在不断地膨胀。显然,这种宇宙是无限的,它是一个无限无边的宇宙。

三维空间曲率为负的情况与三维空间曲率为零的情况比较相似。宇宙一开界始就有无穷大的三维体积,这个初始体积也是奇异的,即三维“无穷大”奇点。它的温度、密度无限高,三维、四维曲率都无限大。大爆炸发生在整个“奇点”上,爆炸后,无限大的三维体积将永远膨胀下去,温度、密度和曲率都将逐渐降下来。这也是一个无限的宇宙,确切地说是无限无边的宇宙。

那么,我们的宇宙到底属于上述三种情况的哪一种呢?我们宇宙的空间曲<率到底为正,为负还是为零呢?这个问题要由观测来决定。

广义相对论的研究表明,宇宙中的物质存在一个临界密度PC大约是每立方米三个核子(质子或中子)。如果我们宇宙中物质的密度p大于pc则三维空间曲率为正,宇宙是有限无边的如果p小于pc,则三维空间曲率为负,宇宙也是无限无边的。因此,观测宇宙中物质的平均密度,可以判定我们的宇宙JL究竟属于哪一种,究竟有限还是无限。

此外,还有另一个判据,那就是减速因子。河外星系的红移,反映的膨胀是减速膨胀,也就是说,河外星系远离我们的速度在不断减小。从减速的快慢也可以判定宇宙的类型。如果减速因子q大于1/2,三维空间曲率将是正的,宇宙膨胀到一定程度将收缩如果q等于1/2三维空间曲率为零,宇宙将永远膨胀下去如果q小于1/2,三维空间曲率将是负的,宇宙也将永远膨胀下去。

下表列出了有关的情况:

我们有了两个判据,可以决定我们的宇宙究竟属于哪一种了。观测结果表八明,P<pc我们宇宙的空间曲率为负,是无限无边的宇宙,将永远膨胀下去!

不幸的是,减速因子观测给出了相反的结果,q>l/2,这表明我们宇宙空间曲率为正,宇宙是有限无边的,脉动的。膨胀到一定程度会收缩回来。哪一种结论正确呢?有些人倾向于认为减速因子的观测更可靠,推测宇宙中可能有某些暗物质被忽略了,如果找到这些暗物质,就会发现P实际上是大于的另一些人则持相反的看法还有一些人认为,两种观测方式虽然结论相反,但得到的空间曲率都与零相差不大,可能宇宙的空间曲率就是零。然而,要统一大家的认识,还需要进一步的实验观测和理论推敲。今天,我们仍然肯定不了宇宙究竟有限还是无限,只能肯定宇宙无边,而且现在正在膨胀!此外,还知道膨胀大约开始于100亿200亿年以前,这就是说,我们的宇宙大约起源于100亿~200亿年之前。

5.宇宙巨壁和宇宙巨洞

20世纪70年代以前,人们普遍认为大尺度宇宙物质分布是均匀的,星系团均匀地散布在宇宙空间。然而,近年来天文研究的进步改变了人们的认识。人们发现,宇宙在大尺度范围内也是有结构的。

同类推荐
  • 幼学琼林(国学启蒙书系列)

    幼学琼林(国学启蒙书系列)

    本书由权威教育专家及国学大师联袂编撰而成,书中精美的插图帮助青少年加深对内容的理解;通过阅读精彩的故事,让青少年懂得为人处世的道理。可以说,这是一套为青少年读者倾力打造的国学启蒙经典读物
  • 青少年应该知道的物质的形态

    青少年应该知道的物质的形态

    本书描写了物质的种类、特征,研究了各类物质与能源及自然界物质形态,介绍了物质的固态、液态、气态和物质的物理和化学属性等。
  • 西班牙大冒险(环游世界大探险)

    西班牙大冒险(环游世界大探险)

    卡西欧博士为了实现其征服世界的计划,便准备去寻找一个有魔力的宝瓶,但是宝瓶开启的咒语是在一副毕加索的画中,而如果想知道那幅画真正的意图,就必须找到上一个宝瓶持有者的后代——一个吉普塞人。田健三郎带着老鼠眼和大胡子再一次上路了。而得到消息的米娜、卡奇和莱恩为了阻止博士的阴谋,也不得不开始了西班牙的冒险之旅……
  • 隐身草的秘密

    隐身草的秘密

    放暑假的第一天,罗奕奕迎来了他的堂妹豌豆妹妹。豌豆妹妹的大名叫做罗琬琬,不过每个人都叫她“豌豆妹妹”,因为豌豆是她最喜欢的蔬菜。豌豆妹妹离不开豌豆,就像熊猫离不开箭竹,兔子离不开青草。绿蘑菇状的叶片可以隐身,青樱桃状的果实可以现身。叶片是甜的,果实是苦的。一次偶然的发现,奕奕和豌豆妹妹掌握了用隐身草隐身的诀窍,这可比玩具战斗机、捉迷藏和之前玩过的任何游戏都要刺激有趣得多。
  • 美国童话19篇(世界传世童话宝库)

    美国童话19篇(世界传世童话宝库)

    相信这些童话,不仅能给孩子们带来一次跨越国界、跨越时空的阅读体验,还能让孩子们真实地感受真、善、美,勇敢地面对困难和挫折,积极地思考和解决问题,大胆地展开想象……总之,这些经典童话中的可贵品质,会使孩子们的人格变得更健全,内心变得更强大,心性变得更随和。
热门推荐
  • 幻世至尊

    幻世至尊

    幻历十三年,幻天大陆最有名的幻王强者夫妇遭到魔族三殿长老追杀,一路逃到幻天大陆西边的广森地界,将还是襁褓中的孩子隐藏在了附近小村,一位神秘的白发老翁将这个襁褓中的孩子捡回家抚养直到幻历二十一年。天地变,强者出世,八岁的罗皓从此踏上了一条通往幻世至尊的道路,这条路上布满荆棘,一次次挑战等着被平息,一个个谜团等着被解开,一场场惊心动魄的事件等着被解决。这个世界上没有天才,有的只是一直努力突破自己的人——罗皓
  • 道冲

    道冲

    仙人抚我顶,结发受长生!修仙异世界,看我主天地祸福,持生死权衡!看我如何在异世界这个浑水里趟个来回!
  • 武道丹玄

    武道丹玄

    武道为基,丹河逆命。天地不仁,诛天灭地。阻我修练者,杀无赦!伤我所爱者,尽诛之!前世道王重生,立誓逆天改命,傲视苍穹。
  • 王俊凯之十年太久

    王俊凯之十年太久

    四周安静的出奇,天地间仿佛只剩下了彼此,花瓣洋洋洒洒的飘落而下,落在地上、肩上、发丝上……“我想再问一遍,你愿意嫁给我吗?”他眸子微眯,呼吸加重,眼底好似翻滚着什么,似期待、似欣喜……她浅浅一笑,脸上是一抹淡红,墨色的瞳仁里只剩下他:“我愿意。”一阵清风吹过,扬起她的发丝,她的嘴角高高的翘起,前所未有的幸福感充斥在心底。
  • 爆笑穿越:鬼马狂妃霸上爷

    爆笑穿越:鬼马狂妃霸上爷

    【免费完结】三人一日游,竟然穿越了,这个不得不信的狗血世界,差点小命不保,更要命的事,她居然差点掉落粪坑里,幸好抓住一条救命稻草,“小朋友,小帅哥,小可爱跟姐姐走吧”某女装作淡定的模样对着一张正太脸说着手抚摸他的脸颊,似流氓般的少女。只见他说了句:“姑娘,这是要对我负责的。她笑容顿时一僵,这声音,这神色……那一刻她只有一个念头,“赶紧溜”“往哪去”他揪住她的衣服。“跑啊!”她转身对着他嫣然一笑,伸手就是一拳:“小样的”
  • “女神”别跑

    “女神”别跑

    众所周知,我大s市第一实验中学乃各路学霸云集之地,各个“身怀绝技武功高强”,于泰山崩于前而面不改色,且该校学生众知高二a班汉子班长曲颜彦霸气狂魅、英明神武,向来目空一切,嗜书如命,可在一天曲颜彦居然会有女神!!!对,你没听错!就是女神!(来段采访:校报记者:同学,请问你对“女神”事件有什么看法?a班同学:妈妈,,,带我回家,把我们的汉子班长换回来!!!!!!!)这是一个糙女汉子钓“女神”的辛(逗)酸(比)血(罗)泪(曼)史,且看腹黑“女神”耍萌汉子漫漫追妻路~
  • 超神学院27.5

    超神学院27.5

    作品《超神学院》第三季7集以后8集以前的同人故事。
  • 恶魔爱人:冷酷贵公子

    恶魔爱人:冷酷贵公子

    他,是一个寂寞的少年,傲慢狂妄是唯一的保护色;她,是一个坚韧不服输的少女,执着等待是对爱情唯一的期许,为他,也为自己。然而,一场命运的错乱,在爱情来不及深刻之时,一切都被打乱。多年后,少年成为冷酷无情的商人,唯一的执着便是——教训那个曾经以爱为名,伤害他的女孩儿!爱或不爱,恨还是遗忘,早已模糊不清,唯有执念不悔……
  • 恋上完美的你

    恋上完美的你

    本作品加入了少量的【灵异元素】。讲述了女主的丈夫隐瞒了自己将死的事情,让她误以为自己是个贪新厌旧的男人,在死后默默的守护着她,直到女主将自己完全忘记。其实从第一章开始,女主的人生就开始改变了!她前后遇到了两个男生,最后都喜欢上了自己,只因种种的误会与原则性的选择,让女主放弃了那个最爱的人!但……事情永远不会就这样划上句点。
  • 东土记

    东土记

    那是东土最好的时代,野花盛开,那也是东土最坏的时代,众生皆苦。百年前,有白发苍髯的武夫闭关东南,有红衣夫子坐镇中州,有青莲剑仙云游天下……百年后,有麻衣负剑的清稚少年下山再上山,有白衣悬刃的将门儿郎悍然斩不平,有温文平和的年轻书生长揖入天安……于这世间走上一遭,他们每个人都会有自己的故事,或炽烈如火,或寡淡如水,或千秋传唱,或瞬若彗星。唯一相同的是,这,都是东土的故事。