登陆注册
14739500000010

第10章 主导控制(5)

将脑室的标本制成超薄切片,在透射电子显微镜下放大几十万倍进行观察,可以见到这些神经元的超微结构特征,甚至能看到“接触脑脊液的神经元”形成的突触。

应用免疫细胞化学方法,还可以显示出“接触脑脊液的神经元”含有肽类、胺类或氨基酸类递质。

“接触脑脊液的神经元”,一方面,可以接受脑脊液内化学的或物理性的刺激,例如鱼类的“接触脑脊液的神经元”就起着“侧线器”的作用,能接受鱼在游动时的刺激,有助于鱼维持在水中的平衡;另一方面,可以释放递质至脑脊液,再通过脑脊液对脑组织实现远距离调整,从而构成“脑—脑脊液神经体液回路”,维持神经系统内部的稳定性。

在医疗实践中,“接触脑脊液的神经元”也有重要的应用价值。由于脑组织的神经递质可以直接释放至脑脊液,于是,可以通过检测脑脊液中神经递质的含量,来对某些神经系统疾病进行诊断。例如“舞蹈病”病人脑脊液中的7-氨基丁酸含量降低,这可以作为诊断该病的重要依据。

很少发生肿瘤的神经细胞

大家已经知道,肿瘤是一类常见病和多发病,它几乎遍及全身各种组织器官,但也不是无处不在。在浩如烟海的科学文献报道中可以发现,对神经组织,除了胶质细胞和某些“胚胎神经母细胞”(如“视网膜神经母细胞”、“交感神经节母细胞”)外,成熟的神经细胞,尤其是中枢神经系统的神经细胞,还没有见到发生肿瘤的报道。

神经细胞不发生肿瘤,这绝不是一种偶然现象,它必然有其科学根据。

肿瘤组织的显著特征,就是细胞的无限制分裂、增生。与身体其他组织的细胞不同,神经细胞,尤其是中枢的神经细胞,是分化最高的细胞,一旦成熟就不能分裂。虽然有少数研究报道认为,成熟的神经细胞也能进行分裂,但是直到目前为止,还没有得到神经科学家们的一致公认。因此,一个神经细胞由生到死的生命过程,就应该代表人体的正常寿命。

为什么神经细胞成熟后,就不能再分裂呢?

这个问题还没有十分令人信服的答案。不过,我们从神经细胞的构造可以做出初步的设想。

身体中的每一个细胞内都含有许多“细胞器”,其中有一种叫做“中心体”的结构,是与细胞分裂有关的。在细胞分裂时,中心体引导染色体向两极移动,分化为两个子细胞。可是对神经细胞,中心体的作用不是参与细胞分裂,而是与“微管”装置的形成和维持有关。如此看来,神经细胞的中心体不参与细胞分裂,神经细胞也就幸免于肿瘤的侵袭。当然,这里是否还存在其他的分子生物学机制(如基因调控),或者神经细胞内是否存在着某种抑癌物质,尚需进一步探讨。

永不衰减的高保真信息使者

如果我们把一根神经纤维剪断,或者把神经纤维中途的某个部位使用麻醉药物麻醉,电脉冲就不能从这个部位传导过去了。这说明神经纤维传导电脉冲要求结构和生理机能上必须完整。医生在给患者的下肢做手术时,为不使患者感到疼痛,常常麻醉管理下肢的坐骨神经,就是利用的这个传导特点。

如果在神经纤维的中间受到刺激时,产生的电脉冲是可以向两个方向传导的,就类似导火索中间被点燃后可以向两个方向燃烧一样,这叫做双向传导。

我们机体内的任何一条,哪怕是很细的神经干,都是由成千上万根神经纤维集中成的纤维束。这些神经纤维有的专门负责向神经中枢传送机体的感觉信息,有的专门负责将神经中枢的活动信息发出来,管理传出运动。尽管这些神经纤维彼此靠拢得很近,但是当其中任何一根神经纤维传导电脉冲时,其电脉冲也不会扩散到周围邻近神经纤维上。这就是说,神经纤维上的电脉冲在传导时不会发生信息“串线”或“短路”现象。就像电缆线中的电话线一样,它们各自独立传导信息、互不干扰。这一点对于保证神经传导信息高度准确是非常有益的,也是极其必要的。

不管电脉冲在同一根神经纤维上传导距离有多么远,它们的电脉冲幅值高度永远不会减小,传导速度也不会减慢,这个特点使得它们的信息传导高效率、高保真。这就像一个发光体发出的光,总是按照30万千米/秒的速度传播,决不会因为传播的距离远了,光速就减慢了。

别看神经纤维传导电脉冲速度快,频率最高可达到每秒钟数百次,但是它们传导电脉冲消耗能量极少,使它们传导信息不容易因能量消耗产生疲劳。有的科学家曾经在青蛙的神经纤维上以每秒钟100次的频率连续刺激了12个小时,在累计产生并传导电脉冲40万次以后,还照传不误!由此可见,神经纤维传导电脉冲具有高效性和低耗性。这对于脑这个CPU持久地处理信息是极为必要的。

精巧的神经回路

在学校里,老师们一方面向学生传授知识,另一方面也要不断听取学生的意见,了解学生接受知识的情况,以便不断改进教学内容和方法,提高教学质量。否则,只管教,不管学,势必造成“教”与“学”的分离,导致教学失败。这种听取学生意见,了解情况的过程就是“反馈”。

在神经系统支配和调节全身机能活动的过程中,也存在这种“反馈”现象。一方面,神经细胞发出指令,指挥效应器完成特定的功能,比如肌肉的收缩或腺体的分泌;另一方面,神经细胞也要不断地接受来自效应器的信息,这种信息对神经细胞可以起到“兴奋”或“抑制”的作用。前者称为“正反馈”,后者称为“负反馈”,而完成这种反馈的结构基础就是“神经回路”。

神经系统的反馈回路有很多,既存在于运动性的传出径路,也存在于感觉性的传入径路。例如,位于脊髓的“脊髓前角细胞”,一方面发出轴突支配肌肉的运动;另一方面又通过传入神经,接受来自肌肉运动状态(如肌张力)的信息,借以使发出的命令更加准确和有效。前角细胞的轴突,还可以发出侧支。侧支与另一个中间神经元形成突触,再由中间神经元与前角细胞形成突触,构成反馈回路。

在听觉过程中,内耳螺旋器的毛细胞接收声波刺激,经过四级神经元,传递到大脑皮质的听区;同时,自大脑皮质又发出下行抑制纤维,经各级神经元终止于毛细胞,形成抑制回路,借以排除无关声波刺激的干扰。这就是为什么人们在声音嘈杂的环境中,可以专心听别人讲话,而对一定程度的噪声“充耳不闻”的原因。

类似上述神经系统中的回路,在人体中比比皆是,它是人类神经系统高度发展的又一特征。通过这些精确而巧妙的回路,神经系统的功能才能如此完善。对此,人们只能惊叹大自然造化的“鬼斧神工”。

神经怎样支配肌肉

人们的许多活动,都离不开肌肉的收缩和舒张。无论是从事生产劳动,或是进行体育锻炼,都要靠骨骼肌的舒张和收缩活动来完成。

神经是如何支配肌肉的呢?

这个问题比较复杂,它需要经过“电—化学—电”的传递过程来实现。

当神经兴奋时,就会产生“动作电位”。动作电位传到神经末梢,使末梢释放“神经递质”,从而把电信号变成了化学信号。神经递质与肌细胞上特定部位的蛋白质(即所谓“受体”)结合,能引起细胞膜上生物电的变化。这样,化学信息又变成了电信息。

以支配骨骼肌的运动神经为例,可以说明这个传导过程。

运动神经纤维与所支配的骨骼肌之间,有一种特殊的装置,称为“神经肌肉接头”(即“突触”)。在这个神经与肌肉接头的部位,神经与肌膜间,并没有直接接触,而是隔着一道约20纳米的间隙(称为“突触间隙”)。当神经递质与受体结合后,就使肌细胞膜上的离子通道开放。离子的跨膜流动,就引起生物电变化,即产生“动作电位”。动作电位通过钙离子的“耦联”作用,引起肌肉收缩。

同类推荐
  • 刘慈欣谈科幻

    刘慈欣谈科幻

    《刘慈欣谈科幻》有作者在创作科幻小说时的心路历程,有作者对一些经典科幻作品的精彩书评、影评,还有一些对话与访谈,折射出作者作为一个科幻迷对科幻、对未来的看法,也展现出科幻作家独特的浪漫主义情怀。
  • 新编科技知识全书:衣食住行与科学知识

    新编科技知识全书:衣食住行与科学知识

    面对浩瀚广阔的科普知识领域,编者将科普类的内容归纳总结,精心编纂了一套科普类图书,使读者能够更全面、更深入的了解科普知识,以便解开心中的种种谜团。阅读本套图书,犹如聆听智者的教诲,让读者在轻松之余获得更加全面深刻的理论教育,使自己的思想更严谨,更无懈可击。相信每一个看过这套书的读者都会为之受益。
  • 世界文化博览(第二册)

    世界文化博览(第二册)

    《世界文化博览》精选了大量世界文化与自然遗产,以精炼的文字从多方面加以说明与介绍。揭开历史,一窥背后的故事,将人类历史上的里程碑和转折点,冲突和战争、创造和发现、崛起和衰落等,一一呈现在读者面前。其内容涵盖了原始社会、传媒通讯、人类军事武器的产生、数学宝库、西方文明的产生、人类走向宇航时代等。带你领略世界文化的博大精深,感受文化的力量和魅力,享受精神的盛宴,浓缩世界文化知识精粹。旨在为读者提高文化修养、丰富人生内涵、添加知识储备、准备写作素材、增加聚会谈资……
  • 低碳校园:让我们的学校更美好

    低碳校园:让我们的学校更美好

    《低碳校园--让我们的学校更美好(典藏版)》由宋学军所著,《低碳校园--让我们的学校更美好(典藏版)》旨在引导新时代的青少年一起行动起来,为了我们共同的家园,用自己的实际行动把生活耗用能量降到最低,从而减少二氧化碳的排放,实现绿色低碳生活。低碳生活是一种态度,也是一种责任,更是一种爱,让我们的爱更宽广,更包容,更细致吧!
  • 探索神秘的科学未知(科普知识大博览)

    探索神秘的科学未知(科普知识大博览)

    要想成为一个有科学头脑的现代人,就要对你在这个世界上所见到的事物都问个“为什么”!科学的发展往往就始于那么一点点小小的好奇心。本丛书带你进行一次穿越时空的旅行,通过这次旅行,你将了解这些伟大的发明、发现的诞生过程,以及这些辉煌成果背后科学家刻苦钻研的惊心时刻。
热门推荐
  • 让我自私一次

    让我自私一次

    柯南同人文,。柯哀文,不喜者绕路。组织再次复活,重新长大的柯南和灰原哀再次遇到挑战,这次一向嚣张的组织变得诡异神秘,背后究竟在计划着什么?柯南和灰原哀会遭遇到什么?一只看不见的巨手始终在操控一切,究竟是谁?
  • 轮回语录

    轮回语录

    仰望星空常思:我是谁?我从哪里来?该往何处去?5000年前的部落时代,昆仑山边居住着一个部落叫昆丘,昆丘世代祭祀着传说中的昆仑神,面对天灾人祸,他们相信昆仑有神,主人公在一次天灾中幸存,本对昆仑神虔诚的他开始思考,既然昆仑有神,为何不守护昆丘的子民,曾经的兄弟7人如今只剩下6个,年仅13岁的他开始追寻长生之秘,同兄弟相商,其余5人皆以为他在那次天灾中受了刺激发了疯,15岁之际,他离开了世代居住的部落,开始周游世界,发誓寻得长生之秘
  • 钻石蜜婚

    钻石蜜婚

    被誉为相亲达人被同事选中专业顶包!公交车女闺蜜撬了渣男男友还叫嚣上门?黎温暖觉得是衰到爆!但是,迷糊顶包相亲却遇到超帅军长!各项弱爆,可军长大大一路宠爱超甜呵护!先婚厚爱,暖宠到爆!
  • 皇上别烦本宫:深宫闲妃

    皇上别烦本宫:深宫闲妃

    【纯属虚构,请勿模仿】号称神龙武校第一打女的白晶晶因上QQ农场偷菜而不慎穿越,成了大齐王朝无敌骚包腹黑男的贤妃娘娘。可她居然挂出了“拳打文武百官,脚踢大齐后宫”的彪悍条幅……可怜的大齐后宫哟,被她折腾得鸡飞狗叫猫跳墙,皇后妃子喊爹娘……
  • 混元星域传

    混元星域传

    不悔此生种深情,甘愿孤独自飘零。来生若是缘未尽,宁负苍天不负卿。世间毁誉,世人冷眼,与我何干?吾自淡然一笑!“轩冽”混元星域未来守护者,为爱在宇宙踏上征程,那么最终……?
  • 王俊凯之十年如梦

    王俊凯之十年如梦

    一位呆萌神秘女生,一位帅气青春的明星。一位天真,一位高冷。是她对他的一见钟情,还是他对她的十年誓约?
  • 一世倾城:千年之约

    一世倾城:千年之约

    意外通过一口枯井穿越到陌生的世界。什么?穿越了?!这么狗血的事情居然会降临到她的头上,面对腹黑的王爷,她该怎么做?妥协?她决不!
  • Tales for Fifteen

    Tales for Fifteen

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 楚汉之风云突变

    楚汉之风云突变

    昔年大江东去滚滚流,霸王自刎乌江恨!如今我为霸王,楚汉之局,由我而定!看我如何斗大汉,战天下,平天下!这一世,天下是我西楚霸王的……
  • 契法

    契法

    看一个宅男重生异界的崛起!魔法师?战士?一边去。“你敢和我单挑么?你一个人我一个人,不过我带一群魔兽!”叶白淡淡的说道。“同级我是无敌,世人谁能和我比天才?”某天才大吼。“不,其实你就是一个废渣,虽然我也只是一个幸运的渣渣!”叶白不好意思打击。越级挑战是有滴,女孩纸也是有滴,虐主更是少不得滴,因为叶白是不能无敌滴。“滚蛋,我就要无敌!”叶白大骂道!